Geochemical prospectivity of Au mineralization through Concentration-Number fractal modelling and Prediction-Area plot: a case study in the east of Iran

Document Type : Research Paper


School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran


Birjand region is located in South Khorasan province in the structural-magmatic zone of eastern Iran. This part of the Iranian plateau is the result of subduction during the Cenozoic and subsequent continental collisions. This region is known as important in terms of copper and gold mineralization for various geological reasons. This research aims to develop a map of Au geochemical potential. 1966 geochemical samples were collected in the study area, and a 20-element analysis was performed. After data pre-processing including correction of outlier data and data normalization, and through a graph from the fractal concentration-number (C-N) model to isolate different geochemical populations of Au, As, Sb, Hg, Bi, Mo, Sn, and W with Au targeting, a Prediction-area (P-A) graph was plotted for each variable to determine the weight of each geochemical indicator. The results show that after gold, with an ore prediction rate of 74% and specifying 26% of the studied district as mineralization-prone areas, arsenic with a prediction rate of 72% has covered 28% of the Birjand region as potential mineralization areas while Bismuth and Mercury with a prediction of 64% covered 36% of the Birjand region. In addition, a hybrid indicator map was prepared utilizing a multi-class index overlay method, where the potential geochemical areas were located further south and southeast of Birjand. In addition, there are favourable areas in the middle. Notably, the mineral potential map (MPM) has higher efficiency than any geochemical indicator, with an ore prediction rate of 88% and occupying 12% of the whole prospect area.


Main Subjects

Article Title [Persian]


Abedi, M., Fournier, D., Devriese, S.G.R, Oldenburg, D.W., 2018. Potential field signatures along the Zagros collision zone in Iran. Tectonophysics, 722: 25-42.
Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P., Rashidnejad Omran, N., 2011.
Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration, 108: 220-232.
Afzal, P., Dadashzadeh Ahari, H., Rashidnejad Omran, N., Aliyari, F., 2013. Delineation of gold mineralized zones using concentration-volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geology Reviews, 55: 125-133.
Aghanabati, A., 2005. Geology of Iran. Geological Survey of Iran, 586 p.
Almasi, A., Yousefi, M., Carranza, E.J.M., 2017. Prospectivityanalysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran. Ore Geology Reviews, 91: 1066–1080. Geopersia 2024, 14(1): 213-229 227
Arculus, R.J., 1994. Aspects of magma genesis in arcs. Lithos, 33: 189-208.
Bonham-Carter, G. F., Agterberg, F.P., Wright, D.F., 1989. Weights of evidence modelling: A new approach to mapping mineral potential. Statistical Applications in the Earth Sciences, 89: 171–183.
Bissig, T., Clark, A.H., Lee, J.K.W., Quadt, A., 2003. Petrogenetic and metallogenic responses to Miocene slab flattening: new constraints from the EI Indio-Pascua Au–Ag–Cu belt, Chile/Argentina. Mineralium Deposita, 38: 844-862.
Camus, F., Sillitoe, R.H., Petersen, R. (Eds.), 1996. Andean copper deposits: discoveries, mineralization style and metallogeny. Society of Economic Geologists Special Publication, 5: 1-198.
Carranza, E.J.M., Laborte, A.G., 2016. Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25: 35-50.
Cheng, Q., 1999. Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical exploration, 65:175-194.
Cheng, Q., Agterberg, F., Bonham-Carter, G., 1996. A spatial analysis method for geochemical anomaly separation. Journal of Geochemical exploration, 56: 183-195.
Cheng, Q., Agterberg, F.P., Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51: 109-130.
Cooke, D.R., Hollings, P., Walshe, J.L., 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls. Economic Geology, 100: 801-818.
Corbett, G.J., Leach, T.M., 1998. Southwest Pacific Rim gold–copper systems: structure, alteration and mineralization. Society of Economic Geologists Special Publication, 6: 1-240.
Darabi-Golestan, F., Ghavami-Riabi, R., Khalokakaie, R., Asadi-Haroni, H., Seyedrahimi-Niaraq, M., 2013. Interpretation of lithogeochemical and geophysical data to identify the buried mineralized area in Cu-Au porphyry of Dalli-Northern Hill. Arabian Journal of Geosciences, 6: 4499-4509.
Du, X., Zhou, K., Cui, Y., Wang, J., Zhang, N., Sun, W., 2016. Application of fuzzy Analytical Hierarchy Process (AHP) and Prediction-Area (P-A) plot for mineral prospectivity mapping: A case study from the Dananhu metallogenic belt, Xinjiang, NW China. Arabian Journal of Geosciences, 9: 298.
Gao, Y., Zhang, Z., Xiong, Y., Zuo, R., 2016. Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75: 16-28.
Ghaeminejad, H., Abedi, M., Afzal, P., Zaynali, F., Yousefi, M., 2020. A fractal-based outranking approach for integrating geochemical, geological, and geophysical data. Bollettino Di Geofisica Teorica Ed Applicata, 61 (4): 555-588.
Ghavami-Riabi, R., Seyedrahimi-Niaraq, M., Khalokakaie, R., Hazareh, M., 2010. U-spatial statistic data modeled on a probability diagram for investigation of mineralization phases and exploration of shear zone gold deposits. Journal of Geochemical exploration, 104: 27-33.
Grant, A., 1990. Multivariate statistical analyses of sediment geochemistry. Marine Pollution Bulletin, 21(6): 297-299.
Harris J, Wilkinson L, Grunsky E, Heather K, Ayer, J., 1999. Techniques for analysis and visualization of lithogeochemical data with applications to the Swayze greenstone belt, Ontario. Journal of Geochemical Exploration, 67: 301-334.
Hassanpour, Sh., Afzal, P., 2013. Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences, 6: 957-970.
Hawkes, R.A.W., Webb, H.E., 1979. Geochemistry in mineral exploration, 2nd ed. Academic Press, New York, 657 pp.
Hirst, D.M., 1974. Geochemistry of Sediments from Eleven Black Sea Cores. Geochemistry.
Hou, Z.Q., Zhang, H., Pan, X., Yang, Z., 2011. Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39: 21-45.
Karar, K., Gupta, A.K., Kumar, A., Biswas, A.K., 2006. Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and iron in PM 10 particulates at the two sites of Kolkata, India. Environmental Monitoring and Assessment, 120(1-3): 347-360.
Kay, S.M., Mpodozis, C., Coira, B., 1999. Neogene magmatism, tectonism, and mineral deposits of the central Andes (22° to 33°S Latitude). B.J. Skinner (Ed.), Geology and Ore Deposits of the Central Andes. Society of Economic Geologist Special Publication, 7: 27-59. 228 Seydi et al.
Kerrich, R., Goldfarb, R., Groves, D., Garwin, S., 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Science in China, 43: 1-68.
Khalifani, F., Bahroudi, A., Barak, S., Abedi, M., 2019. An integrated Fuzzy AHP-VIKOR method for gold potential mapping in Saqez prospecting zone, Iran. Earth Observation and Geomatics Engineering, 3(1): 21-33.
Li, C.J., Ma, T.H., Shi, J.F., 2003. Application of a fractal method relating concentration and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77: 167-175.
Malinowski, E.R., Howery, D.G., 1980. Factor analysis in chemistry (p. 10). New York: Wiley. Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. WH Freeman, San Francisco, 1-468.
Mirzaie, M., Afzal, P., Adib, A., Rahimi, E., & Mohammadi, G. (2020). Detection of zones based on ore and gangue using fractal and multivariate analysis in Chah Gaz iron ore deposit, Central Iran. Journal of Mining and Environment, 11(2): 453-466.
Mitchell, A.H.G., (1973). Metallogenic belts and angle of dip of Benioff zones. Nature, 245: 49-52.
Mohammadpour, M., Bahroudi, A., Abedi, M., Rahimipour, Gh., Jozanikohan, G., Mami Khalifani, F., 2019. Geochemical distribution mapping by combining number-size multifractal model and multiple indicator kriging. Journal of Geochemical Exploration, 200: 13-26.
Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., Ghaderi, M., 2015. Iron and Fe–Mn mineralisation in Iran: implications for Tethyan metallogeny. Australian Journal of Earth Sciences, 62(2): 211-241.
Nazarpour, A., Omran, N.R., Paydar, G.R., 2015. Application of multifractal models to identify geochemical anomalies in Zarshuran Au deposit, NW Iran. Arabian Journal of Geosciences, 8(2): 877-889.
Nezhad, S.G., Mokhtari, A.R., Rodsari, P.R., 2017. The true sample catchment basin approach in the analysis of stream sediment geochemical data. Ore Geology Reviews, 83: 127-134.
Nykanen, V., Lahti, I., Niiranen, T., Korhonen, K., 2015. Receiver operating characteristics (ROC) as validation tool for prospectivity models-a magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71: 853-860.
Panahi, A., Cheng, Q., Bonham-Carter, G.F., 2004. Modelling lake sediment geochemical distribution using principal component, indicator kriging and multifractal power-spectrum analysis: a case study from Gowganda, Ontario. Geochemistry: Exploration, Environment, Analysis, 4(1): 59-70.
Peacock, S.M., 1993. Large-scale hydration of the lithosphere above subducting slabs. Chemical Geology, 108: 49-59.
Perello, J., Carlotto, V., Zarate, A., Ramos, P., Posso, H., Neyra, C., Caballero, A., Fuster, N., Muhr, R., 2003. Porphyry-style alteration and mineralization of the Middle Eocene to early Oligocene Andahualas–Yauri belt, Cuzco region, Peru. Economic Geology, 98: 1575-1606.
Qiuming, C., 2000. Multifractal theory and geochemical element distribution pattern, Earth Science. Journal of China University of Geosciences, 25: 311-318.
Richards, J.P., Boyce, A.J., Pringle, M.S., 2001. Geologic evolution of the Escondida area, northern Chile: a model for spatial and temporal location of porphyry Cu mineralization. Economic Geology, 96: 271-306.
Richards, J., Wilkinson, D., Ullrich, T., 2006. Geology of the Sari Gunay epithermal gold deposit, Northwest Iran. Econ. Geol. 101: 1455-1496.
Riemann, C., Filzmoser, P., Garrett, R.G., 2002. Factor analysis applied to regional geochemical data: problems and possibilities. Applied geochemistry, 17(3): 185-206.
Roshanravan, B., Aghajani, H., Yousefi, M., Kreuzer, O., 2019. An improved prediction-area plot for prospectivity analysis of mineral deposits. Natural Resources Research, 28(3): 1089-1105.
Seydi, A., Abedi, M., Bahroudi, A., Ferdowsi, H., 2023. Geochemical prospectivity of Cumineralization through Concentration-Number fractal modeling and Prediction-Area plot: a case study in east Iran. International Journal of Mining and Geo-Engineering, 57(2): 159-169.
Seyedrahimi-Niaraq, M., Hekmatnejad, A., 2020. The efficiency and accuracy of probability diagram, spatial statistic and fractal methods in the identification of shear zone gold mineralization: a case study of the Saqqez gold ore district, NW Iran. Acta Geochimica, 40: 78-88.
Sillitoe, R.H., 2003. Iron oxide-copper-gold deposits: an Andean view. Mineralium Deposita, 38: 787- 812.
Geopersia 2024, 14(1): 213-229 229
Sillitoe, R.H., 1993. Gold-rich porphyry copper deposits: geological model and exploration implication. Mineral Deposit Modeling. Geological Association of Canada Special Paper, 40: 465-478.
Sillitoe, R.H., 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67: 184-197.
Skewes, M.A., Stern, C.R., 1995. Genesis of the giant late Miocene to Pliocene copper deposits of central Chile in the context of Andean magmatic and tectonic evolution. International Geology Review, 37(10): 893-909.
Sprovieri, R., Thunell, R., Howe, M., 2020. Paleontological and geochemical analysis of three laminated sedimentary units of late Pliocene-early Pleistocene age from the Monte San Nicola section in Sicily. Rivista Italiana di Paleontologia e Stratigrafia, 92(3).
Tahernejad, M.M., Khalo Kakaei, R., Ataei, M., 2018. Analyzing the effect of ore grade uncertainty in open pit mine planning; A case study of Rezvan iron mine, Iran. International Journal of Mining and Geo-Engineering, 52(1): 53-60.
Wu, R., Chen, J., Zhao, J., Chen, J., Chen, S., 2020. Identifying Geochemical Anomalies Associated with Gold Mineralization Using Factor Analysis and Spectrum–Area Multifractal Model in Laowan District, Qinling-Dabie Metallogenic Belt, Central China. Minerals, 10(3): 229.
Yousefi, M., Carranza, E.J.M., 2015. Prediction–area (P-A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79: 69-81.
Yousefi, M., Carranza, E.J.M., 2016. Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25: 3-18.
Zhang, N., Zhou, K., Du, X., 2017. Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China. Journal of African Earth Sciences, 128: 84-96.
Zuo, R., 2011. Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet. China. Appl. Geochem. 26: S271-S273.
Zumlot, A.B.T., 2012. Multivariate statistical approach to geochemical methods in water quality factor identification; application to the shallow aquifer system of the Yarmouk Basin of north Jordan. Research Journal of Environmental and Earth Sciences, 4(7): 756-768.
Zuo, R., Wang, J., 2016. Fractal/multifractal modeling of geochemical data: a review. Journal of Geochemical Exploration, 164: 33-41.