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Abstract 
Birjand region is located in South Khorasan province in the structural-magmatic zone of eastern Iran. 
This part of the Iranian plateau is the result of subduction during the Cenozoic and subsequent 
continental collisions. This region is known as important in terms of copper and gold mineralization for 
various geological reasons. This research aims to develop a map of Au geochemical potential. 1966 
geochemical samples were collected in the study area, and a 20-element analysis was performed. After 
data pre-processing including correction of outlier data and data normalization, and through a graph 
from the fractal concentration-number (C-N) model to isolate different geochemical populations of Au, 
As, Sb, Hg, Bi, Mo, Sn, and W with Au targeting, a Prediction-area (P-A) graph was plotted for each 
variable to determine the weight of each geochemical indicator. The results show that after gold, with 
an ore prediction rate of 74% and specifying 26% of the studied district as mineralization-prone areas, 
arsenic with a prediction rate of 72% has covered 28% of the Birjand region as potential mineralization 
areas while Bismuth and Mercury with a prediction of 64% covered 36% of the Birjand region. In 
addition, a hybrid indicator map was prepared utilizing a multi-class index overlay method, where the 
potential geochemical areas were located further south and southeast of Birjand. In addition, there are 
favourable areas in the middle. Notably, the mineral potential map (MPM) has higher efficiency than 
any geochemical indicator, with an ore prediction rate of 88% and occupying 12% of the whole prospect 
area. 
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Introduction 
 
Cu (–Mo– Au) porphyry deposits are the world's primary source of Copper and Molybdenum 
and an essential source of gold. The sheer volume of these reserves makes them attractive 
exploration targets. Most porphyry copper deposits worldwide are associated with subduction-
related calc-alkaline magmas and occur spatially in magmatic arcs (Mitchell, 1973; Sillitoe, 
1972; Camus et al., 1996; Cooke et al., 2005). Classical regions in the continental arc 
configuration in the central Andean are considered oceanic subduction plate flattening, crustal 
thickening, and associated block elevation (Skewes & Stern, 1995; Kay et al., 1999; Richards 
et al., 2001; Bissig et al., 2003; Perello et al., 2003; Cooke et al., 2005). Porphyry sediments 
occur in the structure of island arcs throughout the western Pacific and are mainly controlled 
by faults along with the parallel arc faults, and transverse arc faults are related to the rupture of 
subducted slabs (Sillitoe, 1993; Kerrich et al., 2000; Corbett & Leach, 1998). These sediments 
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are formed from hydrothermal fluids released from hydrogen arc magmas with high sulfur. The 
mentioned sediments are from a metasomatized wedge mantle obtained by subducted slab 
fluids (Peacock, 1993; Arculus, 1994). Classical sections for such deposits are found in the 
Himalayan-Tibetan orogeny in the metallogenic belt of Eastern Tethyan. Giant Copper-
Molybdenum and Copper-Gold porphyry deposits exist in both the southern and eastern parts 
of Tibet (such as the Yulong and Gangdese porphyry copper belts). Studies to find porphyry 
deposits in the Birjand region need to be widely developed. Still, due to the geological structures 
of the Birjand region and its location, which is almost on the porphyry mineralization belt of 
Iran, starting from the northwest to the southeast, the possibility of porphyry deposits in this 
area is very high. 
   Separating the geochemical anomalies is a helpful tool for geochemical exploration. 
Anomalous thresholds, the most beneficial criterion for cross-checking information with 
numerical data from different sources, are commonly used in geochemical studies (Hou et al., 
2011; Harris et al., 1999; Cheng, 1999; Cheng et al., 1996). Mineral capacity forecasting 
modelling using the Geographic Information System (GIS) is a valid and accepted tool for 
drawing reproducible mineral exploration goals. Abnormal geochemical areas can be defined 
by more than a particular threshold value. Different statistical methods based on a specific 
assumption about the statistical distribution of geochemical variables to determine the values 
of anomaly threshold, for the separation of geochemical provinces concerning the mineral 
deposit's purpose, have attracted scientists' attention (Ghavami-Riabi et al., 2010; Darabi-
Golestan et al., 2013; Seyedrahimi-Niaraq & Hekmatnejad, 2020). Recognition and separating 
anomalous areas from the background are an integral part of any geochemical exploration 
research (Qiuming, 2000; Hawkes & Webb, 1979). 
   Different versions of fractal/multi-fractal modelling, developed by Mandelbrot (1983), have 
been proposed to analyze geochemical data. Numerous studies have been devoted to the use of 
these versions: number-size (N-S) by Mandelbrot (1983), concentration-area (C-A) by Cheng 
et al. (1994), distance-concentration (C-D) by Li et al. (2003), concentration-volume (C-V) by 
Afzal et al. (2011, 2013) and concentration- number (C-N) by Hassanpour & Afzal (2013). One 
of the main features of fractal models compared to statistical methods is considering the spatial 
status of informational samples (Zuo, 2011; Ghaeminejad et al., 2020), which reflects a region's 
geological, geochemical, and mineralogical sequences. Based on fractal analysis (Zuo & Wang, 
2016; Panahi et al., 2004; Mohammadpour et al., 2019), it can deduce geochemical indicators 
to prepare the mineral potential map (MPM).  
   In MPM, the location of known deposits can be used to evaluate forecasting models' 
performance, which is achieved by covering mineral deposit sites on an exploratory classified 
model (Mirzaie et al., 2020; Nykanen et al., 2015; Yousefi & Carranza, 2015). MPM is a multi-
criterion decision-making (MCDM) function that aims to map and prioritize suitable areas to 
identify undiscovered mineral reserves of the desired type ( Carranza & Laborte, 2016). 
Bonham-Carter et al. (1989) used the weight of spatial index classes divided by their respective 
area covered (area occupied by each type of proven values) to estimate the probability of 
discovering mineral deposits in several classes, primarily by fractal analysis. Yousefi & 
Carranza (2015, 2016) developed the Prediction-Area plot (P-A), through which the percentage 
of known deposits predicted by the forecasting layers (forecast rate) and the desired areas of 
the respective forecasting classes help to determine the comparative importance of different 
forecasting models. By plotting the P-A diagram, the deposit rate and the desired region for the 
exploration targets' mineralization help the forecast models (Du et al., 2016; Gao et al., 2016; 
Nezhad et al., 2017; Zhang et al., 2017; Almasi et al., 2017). Therefore, if two forecasting 
models plot exploratory targets with other desired regions but with the exact prediction value, 
the model's performance with smaller target areas is higher than that with larger target areas 
(Roshanravan et al., 2019). 
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   The primary purpose of this study is to identify geochemical anomalies in the Mokhtaran, 
Basiran, Dehsalm, and Kardegan areas under a single map using stream sediment samples. 
Through multivariate analysis of geochemical clustering data and principal component analysis 
(PCA), several indicators are prepared to be displayed at intervals indicating the usefulness of 
Au after pre-processing all input elements. This area is a polymetallic region where, in addition 
to gold mineralization, there is also copper, lead and zinc mineralization in it (Seydi et al., 
2023). Simultaneous consideration of the C-N fractal curve and the P-A diagram provides 
information about the data-driven weights of each indicator map. At the end of the process, a 
data-driven multi-class index overlay method is developed to predict Au occurrence more 
accurately. 
 
Geology of the study area  
 
The structural zoning map of Iran (Figure 1) was prepared by Agha-Nabati in 2005, in which 
the study area is specified. The map of the study area (Figure 2) includes four maps of Basiran 
(the right one in the middle third), Kardegan (the left one in the middle third), the Mokhtaran 
(in the upper third), and the Dehsalm (in the lower third), that each of them was prepared in a 
1: 100,000 scale by the Geological Survey of Iran. Due to differences in the map legend as well 
as minimal differences at the intersection in the corresponding points at the exact coordinates, 
it is prepared in an integrated manner. 
 

 
Figure 1. Structural geological map of Iran on which the location of the study area is specified (prepared 
by Aghanabati, 2005 and Richards et al, 2006; reproduced by Abedi et al., 2018) 
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Figure 2. The detailed geological map with 1: 100,000 scale. The study area consists of the regions of 
Basiran, Dehsalm, Kardegan, and Mokhtaran 
 
    The unique geological and tectonic position of the Mokhtaran region, located in the southern 
part of Birjand city, located in South Khorasan province, has made this region a good potential 
for the occurrence of porphyry copper and epithermal gold ores. The presence of young 
intrusive masses in the region, such as microgranodiorite, and the presence of Paleogene 
volcanic as hosts are essential indicators of epithermal gold and porphyry copper mineralization 
in the area. Significant alterations that represent porphyry copper and epithermal gold minerals 
in this region include propylitic alteration (calcite, epidote, and chlorite minerals), argillic and 
sericite alteration (malachite and azurite minerals, which are part of the hydroxyl minerals 
group) and iron oxides alteration (goethite, hematite, and lepidocrocite). 
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    In the Basiran region, due to its unique geological conditions and many magmatic activities 
in different geological eras, it is possible to find different types of mineralization such as 
epithermal, porphyry, and veins; for example, we can mention the Qale-Zari copper-gold mine. 
This region's eastern and central part is mainly covered by Mesozoic and Tertiary sediments 
and volcanic rocks. The rock units of the Basiran region can be divided into five groups: 
sedimentary rocks, plutonic and hypabyssal igneous rocks, lavas, pyroclastic rocks, and skarns.  
The oldest stratigraphic unit in the study area is Jurassic shale and sandstone. Paleocene base 
conglomerates are brown and massive, and thick cream-coloured limestone containing 
Paleocene microfossils are metamorphosed on lava, sandstone lavas and pyroclastic rocks 
belonging to the Eocene which are cut off by the plutonic and hypabyssal rocks. In some parts 
of this area, Neogene conglomerates up to 50 m thickness are located on Eocene lavas and tuffs. 
Massifs such as granodiorite, granite, and diorite are exposed in different parts of this region, 
attributed to the Mesozoic and Tertiary geological periods (Seydi et al., 2023). 
    Dehsalm region is mainly covered by volcanic rocks of the third era with a significant 
andesitic-dacite composition, so the various parts are covered by sand and volcanic rocks with 
a dark appearance. The rocks of this region can be divided into internal and external. The inner 
rocks include granophyre, quartzite, and syenite, and green diorite is seen in the heights of the 
region. The external rocks of this area include basaltic andesite with a greyish-green colour and 
dacite with a cream-to-pink colour; all the site's outer rocks have been affected by argillic, 
propylitic, and siliceous alterations. Metabasite rocks are well spread in the Dehsalm area and 
can combine amphibolite, meta-basalts, basalts, calc silicates, schists, and occlusions. 
    In the Kardegan region, intense and continuous volcanic activity in the Middle Jurassic can 
be named the most important geological activity, along with landslide faults and gentle folds. 
Shale, sandstone, and Lower Jurassic to Upper Cretaceous limestones can be found in the old 
layers of this area, which have been severely wrinkled in some areas. Some of the rocks in the 
Kardegan area have been transformed into slate and schist. Plutonic and hypabyssal igneous 
rock of this region include from Eocene to Oligocene and as one of the igneous units, dark 
basaltic lavas are the most widespread in the area. Among the igneous rock, we can point to the 
almost acidic rocks of dacite and rhyolite with porphyry texture and basalt to acidic tuffs, all 
three of which are part of hypabyssal igneous rock. The only plutonic igneous units are diorite 
and granodiorite, which due to being covered by Quaternary alluvium, only small protrusions 
can be seen in the region. 
   Birjand region, due to subduction, a significant volume of magmatism activities in the form 
of volcanic events and the placement of intrusive masses in this region has been done. There 
are intrusive masses of granodiorite, quartz diorite, and diorite with Eocene age, as reported in 
the Urmia-Dokhtar belt. In addition to these intrusive bunches, volcanic rocks like basalt, 
andesitic basalt, andesite and their associated pyroclastic have been reported. Some igneous 
rocks are in the form of stocks within volcanic units in the region. Pyroclastic and volcanic 
deposits are commonly seen on and around stocks. Geochemical and petrological evidence 
suggests these igneous massifs formed in a subduction zone. There is evidence of magmatic 
mixing between the submerged lithosphere and crustal rocks. The intrusive masses are 
generally located petrologically in the calc-alkaline to Shoshonitic series and characterize the 
continental arc environment with enriched mantle origin and subduction-zone fluids' effect. 
   As a result of magmatic activity and subsequent events, various minerals such as copper, 
molybdenum, gold, and silver have been formed. Some of these minerals are in veins form, 
massive sulfides, and skarn deposits, while others have been reported as porphyries. In the study 
area, according to the studies that have been done and the comprehensive map prepared by the 
Geological Survey and Mineral Exploration of Iran regarding the distribution of mines in the 
country, there are active mines in the Mokhtaran region that have copper mineralization and 
other minerals. Khonik mine is a low-sulfide epithermal mine whose mineralization is gold, 
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silver, copper, and boron located in the geological unit of volcanic and agglomerated sections 
of the Eocene period. The Copper-Gold mine of Chah-Zaghoo is a porphyry-skarn type, and its 
host rock is granite. In the Kardegan area, a porphyry Copper mine well-known as Chah-
Shalghami is located in the andesite-basalt and grey to black basalts. The Qale-Zari mine, 
situated in andesitic lavas, semi-deep equations, and tuff, is an IOCG ore deposit whose main 
ores are copper and gold (Sillitoe, 2003). 
 
Research method 
 
Analysis of geochemical data 
 
Table 1 contains statistical properties such as the number of samples in the region for each 
studied element and their maximum, minimum, mean, and standard deviation, including As, 
Au, Bi, Hg, Mo, Sb, Sn and W. The histograms of geochemical concentration distribution are 
shown in the first and third columns of Figure 3. Their box diagrams are shown in the second 
and fourth columns of Figure 3, which eliminate outlier data for a better geochemical potential 
map. Simultaneously examining the histogram of geochemical concentration distribution and 
box diagrams, general information about how the data is distributed in terms of concentration 
is obtained. 
 

  

  

  

   
Figure 3. Statistical graphs consist of a geochemical concentration distribution histogram (left 
column) and box diagram (right column) for Arsenic and Gold (row 1), Bismuth and Mercury (row 
2), Molybdenum and Antimony (row 3), Tin and Tungsten (row 4) respectively 
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Table 1. Statistical characteristics of the most important paragenesis related to gold mineralization 
Standard Deviation Mean Maximum Minimum Number  

7.6885 12.1198 135.0000 3.1000 1964 As 
1.7729 1.0293 36.0000 0.3000 1965 Au 
0.1070 0.2005 2.2000 0.1000 1964 Bi 
0.0088 0.0214 0.1000 0.0050 1963 Hg 
0.2645 0.8189 3.3000 0.3000 1965 Mo 
0.5507 1.0233 9.6000 0.1900 1963 Sb 
1.8679 2.5241 7.2510 0.3000 1963 Sn 
35.4348 16.1446 234.0000 0.5000 1965 W 

 
    One of the methods that can be widely used in studying geochemical models is multivariate 
statistical methods that allow the classification and ranking of geochemical anomalies 
(Tahernejad et al., 2018). For example, we can mention the correlation of the coefficient method 
between the elements, which can determine the relationship between the elements and the main 
variables related to the case study mineralization. The correlation between the elements can 
also be investigated using the clustering method (Riemann et al., 2002; Nazarpour et al., 2015), 
in which the correlation between 17 geochemical variables is shown in the dendrogram of 
Figure 4. The following section determines the relationship between the gold element and 16 
other chemical variables using the Pearson method, as shown in Table 2. In the dendrogram, 
most of the gold correlation is with bismuth, arsenic, molybdenum, mercury and antimony. In 
contrast, by using the values obtained from the Pearson correlation coefficient, it has the highest 
correlation with strontium at 0.299 and then with mercury at 0.186. 
    Factor analysis is a dimensional tool in statistical analysis (Khalifani et al., 2019; Grant, 
1990; Zumlot, 2012), which has attracted the attention of researchers to find the main factor 
among several geochemical variables. Multivariate statistical analysis, especially factor 
analysis, is suitable for behavioural characteristics and reducing the number of geochemical 
variables. It has been widely used in factor analysis to interpret geochemical data of stream 
sediments. The ultimate goal of factor analysis is to explain the types of multivariate data by as 
many factors as possible and to identify the hidden multivariate data structure. Factor analysis 
is suitable for interpreting the inherent variability in a geochemical data set with many input 
elements being analyzed. As a result, factor analysis is often a powerful tool for analyzing 
exploratory data (Li et al., 2003). 
   Principal component analysis was performed for the geochemical data of the stream 
sediments to reduce the variables, where Table 3 lists eight elements and three main factors. 
The elements selected for factor analysis are based on the previous two methods and 
paragenesis associated with gold in most deposits. The main variables of each factor are 
determined based on the values obtained in each of the factors, which in the first factor are: tin, 
tungsten, and bismuth; in the second factor are arsenic and antimony; and in the third factors 
are mercury, gold and molybdenum. 
 
Concentration-Number fractal analysis  
 
Fractal methods show the relationship between geological, geochemical, and mineralogical 
information (Panahi et al., 2004). Among several versions of fractal methods, the concentration-
number (C-N) model can be used to explain how the geochemical population is distributed 
without pre-analyzing the data (Karar et al., 2006; Sprovieri et al., 2020). This model shows a 
spatial relationship between the input property and the sample values. The following equation 
can define the C-N model: 

                              (1) 
    Where ρ is the concentration of the element and N (>ρ) is the total number of samples whose 
concentration is equal to or greater than ρ, F is also a constant, and D is a standard power for 
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the fractal dimensions of the concentration distribution. In addition, an N (> ρ) versus ρ curve 
in a log diagram represents linear segments with different -D slopes corresponding to different 
concentration ranges (Sprovieriv et al., 2020; Nabatian et al., 2015; Hirst, 1974; Malinowski & 
Howery, 1980; Wu et al., 2020). 
    As can be seen from the C-N logarithmic diagram for the Gold (Au) variable, according to 
Figure 5-a, there are four geochemical populations, which, considering the importance of this 
variable and the low value for gold in the Clark table in general, have three populations as 
anomalous values with the threshold of 0.11, shown in Figure 5-c in yellow and orange, and 
contains values above 4 ppm. 
    Based on the C-N logarithmic diagram, the five geochemical populations for Arsenic (As) 
are shown in Figure 6-a, and it can be said that the anomalous area's threshold is equal to 0.58 
and shows grade values that are greater than 78.3 ppm, which are shown in Figure 6-c. 
    For the Antimony (Sb) variable in the C-N logarithmic diagram, five geochemical 
populations are considered; by considering the population trends and also the difference 
between them in Figure 7-A, only the last population is regarded as an anomalous population 
and has a value of 0.69 and is also shown in Figure 7-C as a C-N logarithmic diagram in red 
and applies to carats greater than 6.624 ppm. 
 

Table 2. Pearson correlation of coefficient of the most important elements 
Zn 1.000 

Pb 0.610 1.000 

Ag 0.630 0.867 1.000 

Cr 0.351 0.483 0.576 1.000 

Ni 0.413 0.615 0.649 0.639 1.000 

Bi 0.415 0.351 0.376 0.500 0.227 1.000 

Cu 0.392 0.717 0.751 0.401 0.627 0.054 1.000 

As 0.333 0.449 0.454 0.625 0.268 0.582 0.122 1.000 

Sb 0.463 0.604 0.661 0.655 0.359 0.504 0.420 0.694 1.000 

Co 0.637 0.694 0.766 0.542 0.745 0.384 0.612 0.323 0.503 1.000 

Sn 0.573 0.802 0.902 0.634 0.682 0.417 0.683 0.507 0.615 0.776 1.000 

Ba 0.429 0.676 0.741 0.476 0.297 0.489 0.509 0.507 0.666 0.509 0.657 1.000 

Sr 0.452 0.165 0.165 0.317 0.085 0.584 -0.102 0.399 0.342 0.272 0.118 0.427 1.000 

Hg 0.236 -0.352 -0.405 -0.334 -0.274 0.032 -0.320 -0.174 -0.223 -0.076 -0.434 -0.299 0.381 1.000 

W 0.230 0.295 0.219 0.058 -0.028 0.052 0.175 0.160 0.207 0.071 0.286 0.211 -0.274 -0.018 1.000 

Mo 0.309 0.626 0.648 0.233 0.392 -0.029 0.530 0.087 0.249 0.436 0.689 0.263 -0.504 -0.260 0.209 1.000 

Au 0.087 -0.096 -0.152 -0.076 -0.050 0.060 -0.068 0.051 0.001 -0.093 -0.235 -0.073 0.299 0.186 -0.060 -0.171 1.000 

 Zn Pb Ag Cr Ni Bi Cu As Sb Co Sn Ba Sr Hg W Mo Au 

 

 
Figure 4. Dendrogram analysis of element concentrations in the study area 
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Table 3. Principal Component Analysis (PCA) of the most important elements and display of components 
C3 C2 C1  

0.129 0.395 -0.727 Sn 
0.413 0.406 -0.584 W 

 -0.416 0.475 Bi 
-0.272 0.670 0.390 As 

 0.661  Sb 
0.646 -0.170 0.436 Hg 
0.522 0.247 0.425 Au 
0.251  -0.111 Mo 

 

 
Figure 5. Gold geochemical distribution map, (a) full logarithmic graph of Concentration-Number 
fractal, (b) Prediction-Area diagram, and (c) fractal-based classification map. The extraction weight is 
equal to 1.04597 

 
Figure 6. Arsenic geochemical distribution map, (a) full logarithmic graph of Concentration-Number 
fractal, (b) Prediction-Area diagram, and (c) fractal-based classification map. The extraction weight is 
equal to 0.94447 
 
    For the variable Mercury (Hg) in the logarithmic diagram C-N, five geochemical populations 
are considered according to the specified trend and the distance between them. We believe the 
last two populations are anomalous, showing the threshold value of 0.76 in Figure 8-a and in 
Figure 8-c, shown in orange and red, which can be cited for higher grades 760.0 ppm. 
    Based on the results in Figure 9-a, we can see four different geochemical populations for the 
Bismuth (Bi) variable, which has a threshold of 0.55 and considering the last two regions, which 
are shown in yellow and orange, in Figure 9-C as an abnormal area in the area, it contains grades 
above 1.21 ppm. 
    Five geochemical populations for the Molybdenum (Mo) variable are identified in the C-N 
logarithmic diagram of Figure 10-A. According to studies on the trend and distance of 
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populations from each other, the last two populations are considered abnormal populations, 
which show a value of 0.47 on the diagram and are shown in Figure 10-c on a map drawn in 
orange and red, indicating values above 1.551 ppm. 
 

 
Figure 7. Antimony geochemical distribution map, (a) full logarithmic graph of Concentration-Number 
fractal, (b) Prediction-Area diagram, and (c) fractal-based classification map. The extraction weight is 
equal to 0.57536 
 

 
Figure 8. Mercury geochemical distribution map, (a) full logarithmic graph of Concentration-Number 
fractal, (b) Prediction-Area diagram, and (c) fractal-based classification map. The extraction weight is 
equal to 0.57536 
 

 
Figure 9. Bismuth geochemical distribution map, (a) full logarithmic graph of Concentration-Number 
fractal, (b) Prediction-Area diagram, and (c) fractal-based classification map. The extraction weight is 
equal to 0.48955 
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    As can be seen from the C-N logarithmic diagram for the variable Tin (Sn), according to Figure 
11-A, there are five geochemical populations that, given the trend of grade changes and the 
number of samples available for each, two populations with the threshold value 0.77 for abnormal 
values, shown in Figure 11-C in orange and red and it contains values above 6.5833 ppm. 
    Four geochemical populations are considered for the Tungsten variable (W) in the C-N 
logarithmic diagram. According to the identified trend and the number of mines in the area, 
which include tungsten with good grades, we consider the last two populations as anomalous 
populations, which shows the threshold value of 0.76 in Figure 12-a and in Figure 12-c shown 
in yellow and orange, which can be cited for higher than 177.84 ppm. 
    Figure 13 shows the classification map of all elements in two classes. The first class is related to 
the background values, and the second class is connected to the smallest abnormal value in the 
region. These maps are used to determine the location of mine and mineral occurrences in the study 
area. In this study, two-class maps are used to check the accuracy of the complete logarithmic fractal 
diagram of concentration-number and prediction-area diagram for each element. 
 
Prediction-Area curves 
 
The value of the intersection point can be used as a threshold in the P - A diagram of the control 
layers to create a binary evidence map for use in Boolean MPM logic. Most mineral reserves 
are related to the intersection area to the maximum. 
 

 
Figure 10. Molybdenum geochemical distribution map, (a) full logarithmic graph of Concentration-
Number fractal, (b) Prediction-Area diagram, and (c) fractal-based classification map. The extraction 
weight is equal to 0.24116 

 
Figure 11. Tin geochemical distribution map, (a) full logarithmic graph of Concentration-Number 
fractal, (b) Prediction-Area diagram, and (c) fractal-based classification map. The extraction weight is 
equal to 0.12014 
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Figure 12. Tungsten geochemical distribution map, (a) full logarithmic graph of Concentration-
Number fractal, (b) Prediction-Area diagram, and (c) fractal-based classification map. The 
extraction weight is equal to 0.08004 
 

 
Figure 13. Geochemical distribution map of all elements in two classes, respectively a) Gold, b) 
Arsenic, c) Antimony, d) Mercury, e) Bismuth, f) Molybdenum, g) Tin and h) Tungsten 
 
   In MPM, the weights assigned to spatial evidence should reflect the spatial relationships 
between the spatial evidence and the intended mineral reserves. Therefore, knowing the Au 
locations can help the reliability of the weights assigned to the spatial evidence indicating their 
spatial relationship to mineralization in the Birjand area. There are two curves in a P-A map of 
a control map: the known mineral occurrence prediction curve and the percentage of occupied 
areas curve for the classes. Usually, a fractal model is used to separate different 
populations/classes in a control/evidence map. Since the sum of the prediction rates of the ore 
occurrence and the space occupied by it at the intersection is 100, if two curves intersect at a 
location above the P-A diagram of an evidence layer (relative to other control layers), it 
indicates a smaller area containing more mineral deposits, which means that there is a higher 
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probability of occurrence of mineral reserves for this class in the indicator/evidence map. 
    The P-A diagram in Figure 5-b predicts 74% of high mineralization probability in 26% of 
the studied area. The P-A diagram of the variables shown in Figure 6-b shows 72% of As events 
in 28% of the study area. In the case of Hg and Sb, it shows 64% of the relevant occurrences in 
36% of the area, which is predicted in figure 7-b for antimony and 8-b for mercury, respectively. 
According to Figure 9-b, in the case of Bi element, 62% of bismuth occurrences have been 
identified in 38% of the studied area. Figure 10-b predicts 56% of occurrences of Mo element 
in 44% of the study area. These parameters for Sn and W elements are respectively 53% of 
mineralization events in 47% of the area for tin, according to Figure 11-b, and for tungsten 
according to Figure 12-b, 52% of the events are in 48% of the area. 
    The extracted parameters at the intersections of P-A components for geochemical evidence 
are given in Table 4. 
    This study converts the evidence maps' values using a logistic function in the range [0,1]. 
The weight of individual evidence maps is determined using the P-A diagram by the data-driven 
method. Eight geochemical maps (W, Sn, Mo, Bi, Hg, Sb, Au, As) were prepared based on the 
concentration-number fractal method. The geochemical potential integration map by merging 
all the proven layers is shown in Figure 14-c. The integrated map has five classes (Figure 14-
a), the lowest class containing values 0 - 0.18 (light blue) and the highest class containing values 
0.78 - 1 (red). 
 
Table 4. Parameters and weights derived from the Prediction-Area curve for Evidence layers. 

Weight* Normalize Occupied Area Ore Prediction Elements 

1.04597 2.84615 26 74 Au 
0.94447 2.57143 28 72 As 
0.57536 1.77778 36 64 Sb 
0.57536 1.77778 36 64 Hg 
0.48955 1.63158 38 62 Bi 
0.24116 1.27273 44 56 Mo 
0.12014 1.12766 47 53 Sn 
0.08004 1.08333 48 52 W 
1.99243 7.33333 12 88 MPM 

*Weight is determined through calculating Ln (Ore Prediction/Occupied Area) 
 

 
Figure 14. MPM map based on multi overlay index (MOI) method, (a) Full logarithmic fractal 
diagram of Concentration-Number, (b) Prediction-Area diagram, and (c) Fractal-based classification 
map. The extraction weight is equal to 1.99243 
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    Based on the intersection point in Figure 14-b, the chemical foresight map occupies 12% of 
the study area as desirable areas, where 88% of the known Au occurrence is plotted. The 
composite evidence map weighs more than other geochemical layers (Table 4), which shows 
its superiority over any other evidence map. The weights are calculated using the natural 
logarithm of the ore's forecast rate to the occupied area at the intersection. This means that the 
point of intersection in the MPM's P-A diagram is more valuable (88  ٪ > 74, 72, 64, 64, 62, 56, 
53, and 52%) than other indicators of multi-class index overlap maps. The final Gold foresight 
model has the highest ore prediction rate of mineral events among the relevant variables. 
 
Conclusion 
 
In fractal models, highly enriched mineral areas have a strong and significant relationship with 
the desired locations in the evidence map synthesized in Figure 13-c. The primary anomalous 
areas As, Au, Bi, Hg, Mo, Sb, Sn and W are in the central parts and have less intensity in the 
southern and southwestern parts of the region, and similar areas in terms of expansion, are also 
located in the northern part. The geological map shows that the anomalous areas are mainly 
Middle to Upper Eocene rocks. In the central part of the study area, anomalies in basalt, 
andesite, and dacite rocks have been observed, all of which belong to the Eocene period, which 
shows the most gold anomalies. In the southern and southwestern parts of the study area, 
anomalies in dacite, andesitic, and basaltic rocks, as well as granodiorite along with diorite and 
monzonite, are visible. There are signs of gold enrichment in the northern part of the region. 
The type of host rocks, which are related to the Neogene and pyroclastic types along with apatite 
and some rocks of the Lower Neogene period, have formed different types of reserves. The 
correlation between the types of rocks and the elemental distribution of the C-N method shows 
that andesite, basalt, and dacite are related to gold anomalies in all parts of the study area. 
According to the results of integrated evidence layers and maps, some areas can be introduced 
as new anomalies in the study area, especially in the southwest, south, west and in a smaller 
scale in north of it. 
Another point to note is that a hybrid evidence map with a data-driven multi-class index overlap 
map can depict desirable areas with higher performance than any evidence. Therefore, this 
criterion can be placed in an exploratory base as a robust footprint in gold exploration and the 
need to combine geological and geophysical criteria to reinforce the final synthesis evidence 
map with higher mine deposit prediction rates and less occupied areas as desirable areas. 
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