Characterization of the Bazman geothermal field, the southeast of Iran

Document Type : Research Paper

Authors

1 Department of Geology,Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran

2 Department of Geology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran

3 Department of Hydrogeology and Environmental Geology, Faculty of Earth Sciences,Shahrood University of Technology, Shahrood, Iran

Abstract

The Bazman volcano in the southeast of Iran is considered to be a dormant volcano. To study the hydrogeochemistry and geothermometry, sixteen water samples were collected from the thermal and cold springs. Temperature of the cold springs range from 28.1 to 36.6 C while mean temperature of the thermal spring waters is ~42 C. Generally, the salinity values of the water samples vary from 1102 in the cold spring to 10250 µS/cm in the thermal springs. The water samples are categorized into three types: Cl -Na, Cl-HCO3-Na-and SO4-Na. The composition values of δ2H and δ18O in the thermal springs were resulted from water-rock interaction or underground evaporation in the deep depths. Since the thermal springs have a different temperatures but similar chloride content, it seems that a conductive cooling mechanism is occurring in the geothermal system. Based on the geothermometry results, the equilibrium temperature of the deep reservoir estimated from ~120 to 145 C. The fraction of the cold water mixed with the warm water ascending is estimated to be ~0.94. Finally, the depth of thermal water circulation is estimated to ranging from 1.9 to 3 km under two different scenarios.

Keywords


Article Title [فارسی]

-

Afshar, A., Norouzi, G.H., Moradzadeh, A., Riahi M.A., Porkhial, S., 2017. Curie point depth, geothermal gradient and heat–flow estimation and geothermal anomaly exploration from integrated analysis of aeromagnetic and gravity data on the Sabalan area, NW Iran. Pure Appl Geophys, 174: 1133–1152.##
Afsin, M., Allen, D.M., Kirste, D., Durukan, U.G., Gurel, A., Oruc, O., 2014. Mixing processes in hydrothermal spring systems and implications for interpreting geochemical data: a case study in the Cappadocia region of Turkey. Hydrogeology Journal, 22: 7–23.##
Alçiçek, H., Bülbül, A., Brogi, A., Liotta, D., Ruggieri, G., Capezzuoli, E., Meccheri, M., Yavuzer, İ., Alçiçek, M.C., 416 Askari Malekabad et al. Geopersia, 10 (2), 2020 2018. Origin, evolution and geothermometry of thermal waters in the Gölemezli Geothermal Field, Denizli Basin (SW
Turkey). Journal of Volcanology and Geothermal Research, 349: 1–30.##
Allen, D.M., Bayer, P., Ferguson, G., Blum, P., 2014. Preface: Hydrogeology of shallow thermal systems. Hydrogeology Journal, 22: 1–6.##
Asta, M.P., Gimeno, M.J., Auqué, L.F., Gómez, J., Acero, P., Lapuente, P., 2012. Hydrochemistry and geothermometrical modeling of low–temperature Panticosa geothermal system (Spain). Journal of Volcanology and Geothermal Research, 235: 236:84–95.##
Bagheri, R., Nadri, A., Raeisi, E., Eggenkamp, H.G.M., Kazemi, G.A., Montaseri, A., 2014. Hydrochemical and isotopic (δ18O, δ2H, 87Sr/86Sr, δ37Cl and δ81Br) evidence for the origin of saline formation water in a gas reservoir. Chem Geol, 384: 62–75.##
Bahadori, D., Jahanshahi, R., Dehghani, V., Mali, S., 2019. Variations of stable oxygen and hydrogen isotope ratios in the cold and thermal springs of the Bazman volcanic area (in the southeast of Iran). Environmental Earth Sciences, 78:663.##
Berberian, M., King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Earth Sci, 18(2): 210–265.##
Blasco, M., Gimeno, M.J., Auqué, L.F. 2018. Low temperature geothermal systems in carbonate–evaporitic rocks:Mineral equilibria assumptions and geothermometrical calculations. Insights from the Arnedillo thermal waters (Spain). Science of the Total Environment, 615: 526–539.##
Chatterjee, S., Sinha, U.K., Biswal, B.P., Jaryal, A., Patbhaje, S., Dash, A., 2019. Multicomponent versus classical geothermometry: Applicability of both geothermometers in a medium–enthalpy geothermal system in India. Aquatic Geochemistry, doi:10.1007/s10498–019–09355–w.##
Chenaker, H., Houha, B., Vincent, V., 2018. Hydrogeochemistry and geothermometry of thermal water from north– eastern Algeria. Geothermics, 75: 137–145.##
Cinti, D., Tassi, F., Procesi, M., Brusca, L., Cabassi, J., Capecchiacci, F., Delgado, H. A., Galli, G., Grassa, F., Vaselli, O., Voltattorni, N., 2017. Geochemistry of hydrothermal fluids from the eastern sector of the Sabatini Volcanic District (central Italy). Applied Geochemistry, 84: 187–201.##
Conrad, G., Montignary, R., Thuizat, R., Westphal, M., 1981. Tertiary and Quaternary geodynamics of southern Lut (Iran) as deduced from palaeomagnetic, isotopic and structural data. Tectonophysics, 75(3–4): 11–17.##
D’Amore, F., Fancelli, R., Caboi, R., 1987. Observations on the application of chemical geothermometers to some hydrothermal systems in Sardinia. Geothermics, 16(3): 271–282.##
Dotsik, E., Leontiadis, I., Poutoukis, D., Cioni, R., Raco, B., 2006. Fluid geochemistry of the Chios geothermal area, Chios Island, Greece. Journal of Volcanology and Geothermal Research, 154(3–4): 237–250.##
Farhoudi, G., Karig, D.E., 1977. Makran of Iran and Pakistan as an active arc system. Geology, 5: 664–668.##
Farr, G., Bottrell, S.H., 2013. The hydrogeology and hydrochemistry of the thermal waters at Taffs Well, South Wales, UK. Cave and Karst Science, 40(1): 5–12.##
Ferguson, A.P.G., Fowler, C., Cantwell, C.A., Zierenberg, R.A., McClain, J., Spycher, N., Dobson, P., 2018. A conceptual geochemical model of the geothermal system at Surprise Valley, CA. Journal of Volcanology and Geothermal Research, 353: 132–148.##
Foued, B., Hénia, D., Lazhar, B., Nabil, M., Nabil, C., 2017. Hydrogeochemistry and geothermometry of thermal springs from the Guelma region, Algeria. Journal of the Geological Society of India, 90(2): 226–232.##
Fournier, R.O., 1979. A revised equation for the Na/K geothermometer. Geotherm Resou Council Trans, 3: 221–224.##
Fournier, R.O., Sorey, M.L., Mariner, R.H., Truesdell, A.H., 1976. Geochemical prediction of aquifer temperatures in the geothermal system at Long Valley, California. U.S. Geol. Surv. Open–file Rep, 35: 76–469.##
Fournier, R.O., Truesdell, A.H., 1973. An empirical Na–K–Ca geothermometer for natural waters. Geochim Cosmochim Acta, 37(5): 1255–1275.##
Furi, W., Razack, M., Abiye, T.A., Kebede, S., Legesse, D., 2012. Hydrochemical characterization of complex volcanic aquifers in a continental rifted zone: The Middle Awash basin, Ethiopia. Hydrogeology Journal, 20: 385–400.##
Ghodsi, M.R., Boomeri, M., Bagheri, S., Ishiyama, D., Corfu, F., 2016. Geochemistry, zircon U–Pb age, and tectonic constraints on the Bazman granitoid complex, southeast Iran. Turkish Journal of Earth Sciences, 25(4): 311–340.##
Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim Cosmochim Acta, 52(12): 2749–2765.##
Gupta, H., Roy, S., 2007. Geothermal Energy: An Alternative Resource for the 21st Century. Elsevier, Amsterdam, the Netherlands, 292 pp.##
Han, D.M., Liang, X., Jin, M.G., Currell, M.J., Song, X.F., Liu, C.M., 2010. Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin. Journal of Volcanology and Geothermal Research, 189(1–2): 92–104.##
Hoefs, J., 2008. Stable Isotope Geochemistry, seventh edition. Springer, Berlin, 286 pp.##
Huang, Y.H., Liu, H.L., Song, S.R., Chen, H.F., 2018. An ideal geothermometer in slate formation: A case from the Characterization of the Bazman geothermal field, the southeast of Iran 417 Chingshui geothermal field, Taiwan. Geothermics 74, 319–326.##
Jahanshahi, R., Zare, M., 2017. Delineating the origin of groundwater in the Golgohar mine area of Iran using stable isotopes of 2H and 18O and hydrochemistry. Mine Water Environmental, 36(4): 550–563.##
Karimi, H., Moore, F., 2008. The source and heating mechanism for the Ahram, Mirahmad and Garu thermal springs, Zagros Mountains, Iran. Geothermics, 37(1): 84–100.##
Karimi, S., Mohammadi, Z., Samani, N., 2017. Geothermometry and circulation depth of groundwater in Semnan thermal springs, Northern Iran. Environ Earth Sciences, 76: 659.##
Kharaka, Y.K., Mariner, R.H., 1989. Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCulloh TH (Eds), Thermal History of Sedimentary Basins. Springer–Verlag, New York, NY, USA, pp. 99–117.##
Kompani Zare, M., Moore, F., 2001. Chemical thermometry and origin of the Dalaki mineral springs, Bushehr Province, Iran. Journal of Hydrology, (NZ) 40(2): 189–204.##
Lopez–Chicano, M., Bouamama, M., Vallejeos, A., Publido, B.A., 2001. Factors which determine the hydrogeochemical behaviour of karstic springs. A case study from the Betic Cordilleras, Spain. Applied Geochemistry, 16(9–10): 1179– 1192.##
Mohammadi, Z., Bagheri, R., Jahanshahi, R., 2010. Hydrogeochemistry and geothermometry of Changal thermal springs, Zagros region, Iran. Geothermics, 39: 242–249.##
Mohammadi, Z., Sahraei Parizi, H., 2013. Hydrogeochemistry and geothermometry of the Jowshan thermal springs,Central Iran. Geochemistry International, 51(12): 994–1004.##
Morales–Arredondo, J.I., Esteller–Alberich, M.V., Armienta–Hernández, M.A., Martínez–Florentino, T.A.K., 2018.Characterizing the hydrogeochemistry of two low–temperature thermal systems in Central Mexico. Journal of Geochemical Exploration, 185: 93–104.##
Naderi, M., Jahanshahi, R., Dehbandi, Reza., 2020. Two distinct mechanisms of fluoride enrichment and associated health risk in springs’ water near an inactive volcano, southeast Iran. Ecotoxicology and Environmental Safety, 195:110503.##
Navarro, J.Á.S., López, P.C., Perez–Garcia, A., 2004. Evaluation of geothermal flow at the springs in Aragón (Spain), and its relation to geologic structure. Hydrogeology Journal, 12: 601–609.##
Nieva, D., Nieva, R., 1987. Developments in geothermal energy in Mexico–Part Twelve. A cationic geothermometer for prospecting of geothermal resources. Heat Recovery Systems & CHP, 7(3): 243–258.##
Ohmoto, H., 1986. Stable isotope geochemistry of ore deposits. Rev Mineral, 16, 491–560.##
Pang, J., Pang, Z., Lv, M., Tian, J., Kong, Y., 2018. Geochemical and isotopic characteristics of fluids in the Niutuozhen geothermal field, North China. Environmental Earth Sciences, 77: 12.##
Parisi, S., Paternoster, M., Kohfahl, C., Pekdeger, A., Meyer, H., Hubberten, H.W., Spilotro, G., Mongelli, G., 2011.Groundwater recharge areas of a volcanic aquifer system inferred from hydraulic, hydrogeochemical and stable isotope data: Mount Vulture, southern Italy. Hydrogeology Journal, 19: 133–153.##
Parkhurst, D.L., Appelo, C.A.J., 1999. User’s guide to PHREEQC (version 2): a computer program for speciation, batch reaction, one–dimensional transport and inverse geochemical calculations. Water Resources Investigations, report 95–4259. US Geological Survey, Denver, Colorado.##
Raghimi, M., Yakhkeshi, M.E., 2002. The origin of thermal water of Ziarat, Gorgan by hydrochemistry and isotopic studies. journal of agricultural sciences and natural resources, 9(3): 29–40. (in Persian, with abstract in English).##
Rezaei, A., Javadi, H., Rezaeian, M., Barani, S., 2018. Heating mechanism of the Abgarm–Avaj geothermal system observed with hydrochemistry, geothermometry, and stable isotopes of thermal spring waters, Iran. Environmental Earth Sciences, 77(18): 635. https://link.springer.com/article/10.1007/s12665–018–7828–1.##
Rezaei, A., Rezaeian, M., Porkhial, S., 2019. The hydrogeochemistry and geothermometry of the thermal waters in the Mouil Graben, Sabalan volcano, NW Iran. Geothermics, 78: 9–27.##
Rittenhouse, G., 1967. Bromine in oil–field waters and its use in determining possibilities of origin of these waters. AAPG Bull, 51(15): 2430–2440.##
Rybach, L., Muffler, L.J.P., 1981. Geothermal Systems: Principles and Case Histories. John Wiley & Sons Ltd, The Pitman Press, Bath, Avon, UK, 359.##
Saadat, S., Stern, C.R., 2011. Petrochemistry and genesis of olivine basalts from small monogenetic parasitic cones of Bazman stratovolcano, Makran arc, southeastern Iran. Lithos, 125: 607–619.##
Sharifi, R., Moore, F., Mohammadi, Z., Keshavarzi, B., 2016. Estimation of deepwater temperature and hydrogeochemistry of springs in the Takab geothermal field, West Azerbaijan, Iran. Environmental Monitoring and Assessment, 188: 75.##
Sutherland, R., Townend, J., Toy, V., Upton, P., Coussens, J., Allen, M., Baratin, L. M., Barth, N., Becroft, L., Boese, C., Boles, A., Boulton, C., Broderick, N.G.R., Janku–Capova, L., Carpenter, B.M., Célérier, B., Chamberlain, C., Cooper, A., Coutts, A., Cox, S., Craw, L., Doan, M.L., Eccles, J., Faulkner, D., Grieve, J., Grochowski, J., Gulley, A., Hartog,418 Askari Malekabad et al. Geopersia, 10 (2), 2020##
A., Howarth, J., Jacobs, K., Jeppson, T., Kato, N., Keys, S., Kirilova, M., Kometani, Y., Langridge, R., Lin, W., Little, T., Lukacs, A., Mallyon, D., Mariani, E., Massiot, C., Mathewson, L., Melosh, B., Menzies, C., Moore, J., Morales, L.,Morgan, C., Mori, H., Niemeijer, A., Nishikawa, O., Prior, D., Sauer, K., Savage, M., Schleicher, A., Schmitt, D.R., Shigematsu, N., Taylor–Offord, S., Teagle, D., Tobin, H., Valdez, R., Weaver, K., Wiersberg, T., Williams, J.,
Woodman, N., Zimmer, M., 2017. Extreme hydrothermal conditions at an active plate–bounding fault. Nature, 1546 (7656): 137–140.##
Truesdell, A.H., Fournier, R.O., 1977. Procedure for estimating the temperature of a hot–water component in a mixed water using a plot of dissolved silica vs. enthalpy. US Geol Surv J Res 5, 49–52.##
Yazdi, M., Taheri, M., Navi, P., 2015. Environmental geochemistry and sources of natural arsenic in the Kharaqan hot springs, Qazvin, Iran. Environmental Earth Sciences, 73(9): 5395–5404.##