Characterization of the Bazman geothermal field, the southeast of Iran

Farkhondeh Askari Malekabadi¹, Reza Jahanshahi*¹ Rahim Bagheri²
¹ Department of Geology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran, Post Code: 9816745639, P.O. Box: 98135-674, Tel: +989131790969, Fax: +98543446565
² Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran, Tel. Fax: 02332396007, Post Code: 3619995161
*Corresponding author, e–mail: jahanshahireza@science.usb.ac.ir
(received: 18/01/2020 ; accepted: 15/04/2020)

Abstract
The Bazman volcano in the southeast of Iran is considered to be a dormant volcano. To study the hydrogeochemistry and geothermometry, sixteen water samples were collected from the thermal and cold springs. Temperature of the cold springs range from 28.1 to 36.6 °C while mean temperature of the thermal spring waters is ~42 °C. Generally, the salinity values of the water samples vary from 1102 in the cold spring to 10250 µS/cm in the thermal springs. The water samples are categorized into three types: Cl–Na, Cl–HCO3–Na–and SO4–Na. The composition values of the water samples have been used by many previous researchers to determine the origin of waters and temperature of the thermal reservoirs (Navarro et al., 2004; Chenaker et al., 2018; Mohammadi et al., 2010; Parisi et al., 2011; Furi et al., 2012; Afsin, 2014; Sharifi et al., 2016; Cinti et al., 2017; Foud et al., 2017, Karimi et al., 2017; Blasco et al., 2018; Ferguson et al., 2018, Huang et al., 2018; Morales–Arredondo et al., 2018; Pang et al., 2018; Chatterjee et al., 2019). Some researchers used these characteristics to present a conceptual flow system (Han et al., 2010; Mohammadi et al., 2010; Farr & Bottrell, 2013; Alciçek et al., 2018; Rezaei et al., 2018 and 2019) and evaluating processes of water–rock interaction (Dotsik et al., 2006; Han et al., 2010; Asta et al., 2012; Farr & Bottrell, 2013).

In Iran some of researchers have focused on the hot springs in Zagros Zone (Kompani Zare & Moore, 2001; Mohammadi et al., 2010), Alborz Zone (Raghiimi & Yakhkeshi, 2002; Sharifi et al., 2016; Karimi et al., 2017; Afshar et al., 2017; Rezaei et al., 2019) and Central Iran Zone (Yazdi et al., 2015; Mohammadi & Sahraei Parizi, 2013; Rezaei et al., 2018). However, here we try to study the Bazman geothermal system in East Iranian Ranges and Makran Zone in the southeast of Iran where does not studied significantly until now. Since the Bazman volcano only occasionally smokes, it is a dormant volcano (Bahadori et al., 2019, Naderi et al., 2020). There are fourteen cold and two thermal water springs discharging the Bazman volcano area.

In the study area due to absence of pumping wells in the area, groundwater discharge only via these few springs from local hard rock aquifer. This volcano has a potential to be developed for the geothermal power plant energy. Prior to this research, no work studied the geothermometry of the Bazman geothermal system. Therefore, this study tries to evaluate the thermal and cold water springs scattered over the Bazman volcanic area with emphasis on: (i) hydrogeochemistry of both the cold and thermal waters, (ii) origin of the water

Keywords: Geothermometry, Stable Isotopes, Geothermal Field, Water–rock Interaction, Bazman Volcano

Introduction
Hydrochemical analysis and geothermometry can serve as a tool to estimate the equilibrium temperature of geothermal reservoirs (Blasco et al., 2018). The equilibrium temperature establishes a necessary information for geothermal energy development plants before deep–well drilling (Huang et al., 2018). In a geothermal zone, the deep circulation of groundwater generally can change the local thermal gradients and heat distribution (Allen et al., 2014). Thermal springs as natural discharges from the underground thermal reservoirs are a surface sign of the presence of these kind resources in the area of interest (Karimi et al., 2017). Characterization of the physicochemical and stable isotopic content in the water of the thermal springs have been used by many previous researchers to determine the origin of waters and temperature of the thermal reservoirs (Navarro et al., 2004; Chenaker et al., 2018; Mohammadi et al., 2010; Parisi et al., 2011; Furi et al., 2012; Afsin, 2014; Sharifi et al., 2016; Cinti et al., 2017; Foud et al., 2017, Karimi et al., 2017; Blasco et al., 2018; Ferguson et al., 2018, Huang et al., 2018; Morales–Arredondo et al., 2018; Pang et al., 2018; Chatterjee et al., 2019). Some researchers used these characteristics to present a conceptual flow system (Han et al., 2010; Mohammadi et al., 2010; Farr & Bottrell, 2013; Alciçek et al., 2018; Rezaei et al., 2018 and 2019) and evaluating processes of water–rock interaction (Dotsik et al., 2006; Han et al., 2010; Asta et al., 2012; Farr & Bottrell, 2013).
and possible salinity source of the springs, (iii) estimating the depth of circulation and equilibrium temperatures of the geothermal reservoir, and finally (iv) mixing percentage of the cold–warm waters in the area.

Experimental

Study area

Iran’s plateau is separated into nine tectono-stratigraphic zones (Berberian & King, 1981) (Fig 1a). The study area is situated in the west of the Sistan Suture zone and north of the Makran zone. There are three geomorphological features in the margin of Makran continental including (i) Makran accretionary prisms which cover the southeastern of Iran to the western of Pakistan (Fig 1a); (ii) Jazmurian depression situated at the southern of Lut Block (Fig 1a) and (iii) a zone composed of basaltic to rhyolitic rocks forming the Makran Volcanic Arc (stratovolcanoes) and resulted from the Makran subduction (Saadat & Stern, 2011; Farhoudi & Karig, 1977). Based on Ar – K ages, in the Bazman area, basalts were erupted at 0.6 Ma and 4.6 Ma, respectively (Saadat & Stern, 2011; Conrad et al., 1981). Sedimentary rocks in the area contain Jamal (Upper Permian) and Sardar (Carboniferous) formations where are composed of siltstone, shale, sandstone and limestone (Fig 1b).

Figure 1. According to Berberian & King (1981): units of main tectono-stratigraphic in Iran (Ghodsi et al., 2016) (a) map of geological setting and the thermal and cold springs in the Bazman geothermal zone (b).
These rocks have been intruded by Bazman granitoids complex (Ghodsi et al., 2016). Owing to erosion and the complex has a lower elevation than the surrounding sedimentary rocks. The Bazman area has arid climate characterized by mean annual rainfall of less than 120 mm. The highest, lowest and mean temperatures for the study area are +46 °C, –9 °C and 25.5 °C, respectively. There are two thermal and fourteen cold springs scattered over the area (Fig. 1b). The cold water springs can be grouped into the eastern and western springs. The eastern springs are discharging from the sedimentary rocks (e.g. shale, marl, and sandstone) while the western cold springs are mostly discharged from granitoids, basalts and carbonate rocks. However, the thermal springs are situated over the granitoids complex. The largest cold spring (S10) and the thermal springs (S4 and S5) are usually used by the native people for drinking and bathing/balneotherapy purposes.

Methodology

Sampling and analysis

Groundwater samples were collected from two thermal and fourteen cold springs in June 2017 (Fig 1b) and then sent immediately to labs for chemical and stable isotopes (δ²H and δ¹⁸O) measurements. During water sampling, first the waters were filtered and then poured into clean polyethylene bottles (300 mL). The pH, temperature and EC were measured in situ by portable instruments pH–meter (WalkLAB–TI900) and EC–meter (AQUA–TC 485). The water samples were treated with HNO₃ solution to analyze the major cation. The Mg, Ca, K, Na, Al, Br and Li ions, and SiO₂ were analyzed via IC MS system (HP Agilent 4500). The SO₄ was measured by spectrophotometry (HACH–RD2000), and HCO₃ and Cl were determined by titration methods. To evaluate the uncertainty of the measurements, ion balance equation was used and the ionic balance error for each water sample calculated to be less than 5%. Oxygen and hydrogen isotope ratios in water samples were measured by an OA–ICOS device and them represented according to VSMOW international standard. The chemical and isotopic measurements data are listed in Table 1.

Modelling and statistical methods

Mineral saturation indices of calcite, dolomite, gypsum, halite, albite, analcime, diaspore, jarosite, laumontite, brucite, forsterite, kaolinite, microcline, wollastinite, monticellite and sanidine in the water samples were calculated by the PHREEQC software (Parkhurst & Appelo, 1999) for hydrochemistry and geothermometry investigation.

Pearson’s correlation coefficients between variables of hydrogeochemistry were calculated according to normalized data using SPSS software Version 17 (Table 2). In addition, to identify the multivariate relationships between pH, EC, SO₄, Cl, HCO₃, Na, K, Mg and Ca in water samples, principal components analysis (PCA) were also applied using SPSS software (Table 3).

Equations of the chemical geothermometers (Fournier, 1979; Rybach & Muffler, 1981; Nieva & Nieva, 1987; Kharaka & Mariner, 1989) were used to estimate the temperatures of the deep–water.

Table 1. Physicochemical properties of the thermal and cold water springs in the study area (EC in µS/cm, ions content in mg/L, and δ²H and δ¹⁸O values in ‰ VSMOW).
Table 2. The matrix of Pearson’s correlation for hydrogeochemical properties in the water samples

<table>
<thead>
<tr>
<th></th>
<th>EC</th>
<th>pH</th>
<th>Cl</th>
<th>SO₄</th>
<th>HCO₃</th>
<th>Na</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>1</td>
<td>0.022</td>
<td>0.946</td>
<td>-0.157</td>
<td>0.954</td>
<td>0.827</td>
<td>0.667</td>
<td>0.762</td>
<td>0.762</td>
</tr>
<tr>
<td>pH</td>
<td>0.022</td>
<td>1</td>
<td>0.089</td>
<td>-0.180</td>
<td>0.949</td>
<td>0.260</td>
<td>0.567</td>
<td>0.810</td>
<td>0.810</td>
</tr>
<tr>
<td>Cl</td>
<td>0.946</td>
<td>0.089</td>
<td>1</td>
<td>0.425</td>
<td>0.564</td>
<td>0.831</td>
<td>0.508</td>
<td>0.733</td>
<td>0.733</td>
</tr>
<tr>
<td>SO₄</td>
<td>-0.157</td>
<td>-0.180</td>
<td>0.425</td>
<td>1</td>
<td>0.008</td>
<td>-0.231</td>
<td>0.564</td>
<td>0.008</td>
<td>0.564</td>
</tr>
<tr>
<td>HCO₃</td>
<td>0.954</td>
<td>0.949</td>
<td>0.831</td>
<td>0.508</td>
<td>1</td>
<td>0.260</td>
<td>0.810</td>
<td>0.733</td>
<td>0.733</td>
</tr>
<tr>
<td>Na</td>
<td>-0.024</td>
<td>-0.024</td>
<td>0.949</td>
<td>0.564</td>
<td>-0.135</td>
<td>0.260</td>
<td>0.810</td>
<td>0.733</td>
<td>0.733</td>
</tr>
<tr>
<td>Ca</td>
<td>0.827</td>
<td>0.260</td>
<td>0.567</td>
<td>0.810</td>
<td>0.008</td>
<td>-0.231</td>
<td>0.564</td>
<td>0.008</td>
<td>0.564</td>
</tr>
<tr>
<td>Mg</td>
<td>0.667</td>
<td>0.567</td>
<td>0.810</td>
<td>0.733</td>
<td>0.274</td>
<td>0.508</td>
<td>1</td>
<td>0.709</td>
<td>0.709</td>
</tr>
<tr>
<td>K</td>
<td>0.762</td>
<td>0.810</td>
<td>0.273</td>
<td>0.013</td>
<td>0.832</td>
<td>0.476</td>
<td>0.578</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3. Component loadings of the EC, pH and major ions using method of principal component analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>SO₄</th>
<th>Cl</th>
<th>HCO₃</th>
<th>Na</th>
<th>K</th>
<th>Mg</th>
<th>Ca</th>
<th>EC</th>
<th>pH</th>
<th>% of variance</th>
<th>Cumulative %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>0.664</td>
<td>0.945</td>
<td>-0.106</td>
<td>0.959</td>
<td>0.807</td>
<td>0.765</td>
<td>0.819</td>
<td>0.976</td>
<td>-0.067</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>PC2</td>
<td>0.265</td>
<td>-0.224</td>
<td>0.753</td>
<td>-0.063</td>
<td>0.107</td>
<td>0.526</td>
<td>-0.325</td>
<td>-0.105</td>
<td>-0.84</td>
<td>20</td>
<td>77</td>
</tr>
</tbody>
</table>

Results and discussion

Water chemistry

The results of the chemical analysis are presented in Table 1. The pH values range from 7.1 to 8.9 (Fig 2a) which indicating a neutral to low alkaline waters. The water samples with higher pH are possible related to either carbonate minerals of the Jamal Formation or weathering of silicate minerals of the igneous rocks. Water temperature in the thermal springs ranges from 40 °C at spring S4 to 43.9 °C in the spring S5 while in the cold springs it varies from 28.1 °C in the spring S1 to 36.6 °C in the spring S12. The EC values from groundwater samples range from 1102 in the spring S10 to 10250 µS/cm in the spring S5. In fact, the cold springs have a fresh water and the thermal springs have brackish water (Fig 2b). The concentration of Cl⁻ in the thermal waters ranges from 2335 to 2723 mg/L while in the cold waters it varied from 64.9 – 969.8 mg/L. The Piper and Stiff diagrams (Fig 2c) indicate that the eastern cold springs have the Na–SO₄ water type while the thermal and western cold springs are of the Na–Cl water type. The SO₄ water type can be attributed to the dissolution of gypsum of shale, marl and sandstone rocks (Sardar Formation) by the groundwater of the study area. According to the molar ratio of Na/Cl (Fig 3a), the cold water springs are mostly plotted above the line of Na/Cl = 1; most probably due to the weathering of Na–bearing silicate minerals (Eq. 1) and Na–Ca cation exchange. However, the waters of the thermal springs are plotted near the line of Na/Cl = 1 and = 0.86 may owing to the halite dissolution. Figs. 3b, c and d demonstrate that beyond the dissolution of carbonate minerals (calcite and dolomite), the origin of calcium in the water samples comes from minerals of gypsum, pyroxenes, amphibole and Ca–plagioclase.

2NaAlSi₃O₈+11H₂O+2CO₂ ↔ Al₂Si₂O₇(OH)₄+2Na⁺+2HCO₃⁻+4H₂SO₄

Figs. 3e to 3h show the saturation indices calculated for calcite, dolomite, gypsum and halite of the water of the springs. All water samples are mostly supper–saturated in regards to calcite and dolomite, which indicating that these minerals tend to precipitate in the geothermal system. Otherwise, most of the water samples are under–saturated with respect to halite and gypsum; therefore, groundwater enables to significantly dissolve these minerals and affect the water quality of the study area.

Diagrams of total dissolved solid (TDS) vs. Br (Rittenhouse, 1967) and the ratio of Br/Cl versus Li/Cl (Bagheri et al., 2014) in Fig 4 were used to identify the water salinity sources in the study area. As shown in Fig 4a, the water samples are located around Group IV suggesting that the salinity of the springs may attribute to the effect of dissolution of salt minerals on water quality in the area. However,
the thermal springs tends to fall in Group I as a past seawater. Also, Fig 4b shows that the cold spring waters are plotted in the range of evaporite to freshwater formations, while the thermal springs are attributed to the halite dissolution.

Figure 2. Spatial distribution map of pH (a), EC (b), Piper and Stiff diagrams (c) of the cold and thermal water springs in the study area
Statistical methods
Theoretically, as the water circulation depths for the cold and thermal springs are generally different than each other, it is expected that the chemistry of the cold and thermal waters is dissimilar in the study area. Given this, statistical methods should be applied separately for the cold and thermal springs to obtain better results. Nevertheless, here we consider both them together since there is only two thermal. Table 2 shows that the EC values have a high correlation with all the ions except for HCO₃⁻. The HCO₃⁻ has mostly a negative correlation with other ions. The correlations between pH and other parameters are mostly weak and negative and it shows a buffering reactions. The weak acid anions generated by dissolved CO₂ are the most common.
When it dissolved in water, CO₂ combines with water as H₂CO₃. Then this weak acid via a series of reactions creating a buffer system:

\[CO_2(g) + H_2O = H_2CO_3 \rightarrow H^+ + HCO_3^- \rightarrow H^+ + CO_3^{2-} \] \hspace{1cm} (2)

The factor analysis performed on physicochemical parameters (EC, pH, and major ions) indicate that there are two main factors controlling the physicochemical characteristics in the area where they cumulatively clarify 77% of the total variance (Table 3). The first principal component (PC1) clarifies 57% of the total variance which it has high loadings on Cl, K, Na, Ca and EC and a moderate loading on SO₄ and Mg, indicating the significant role of mineral weathering on the groundwater chemistry in the study area. The second principal component (PC2) contributes 20% of the overall variance, which has positive loadings on HCO₃ and negative loadings on pH. It may owe to buffering reactions. According to hierarchical cluster analysis (HCA), the springs are grouped into four clusters (Fig 5) where the cold samples are mostly in cluster 4 and the thermal springs fall in a different group than the cold water springs.

Hydrogen and oxygen stable isotopes
In the cold and thermal springs of the study area, the δ²H and δ¹⁸O values range from – 24.1 to – 8.6‰ and – 5.06 to 0.04‰, respectively. The isotopic results were compared to the local meteoric water line (LMWL) for the Sirjan region (to the west of the area), as the nearest available LMWL to the area (δ²H= 7.12 δ¹⁸O +15.92 presented by Jahanshahi & Zare, 2017). The isotopic compositions of the water of the springs are plotted in Fig. 6a where the western cold springs plotted roughly on the LWML while the eastern cold springs show a higher enrichment in δ²H and δ¹⁸O. The thermal springs are fell near the western cold spring but with a little bit lower δ²H. Since the study area has an arid climate, it seems that the rainfall before percolating to groundwater has been affected by evapotranspiration and this is resulted in the isotope enrichment in the eastern cold spring’s water.

Figure 4. The relationships between TDS and Br (after Rittenhouse, 1967) (a) and, Li/Cl and Br/Cl (after Bagheri et al., 2014) (b).

Figure 5. Dendrogram of the hierarchical and spatial distribution map of the cluster analysis.
Moreover, Fig. 6a can also be used to explore the effect of juvenile water on the δ^{18}O and δ^2H content in thermal waters. According to Hoefs (2008) juvenile water has never been part of the surficial hydrologic cycle and it originates from the degassing of the earth’s mantle. According to the isotopic composition values for juvenile water (δ^2H = $-60 \pm 20\%$ and δ^{18}O = $+6 \pm 1\%$) that suggested by Ohmoto (1986), Fig. 6a indicates that the isotopic contents of the hot springs are not located in the mixing zone amidst the average of isotopic composition of precipitation and juvenile water. Therefore, one can conclude that the thermal waters do not affected by the juvenile water significantly.
Otherwise, isotope enrichment observed in the thermal springs can be resulted from water–rock interaction and underground evaporation in the deep depths. Ascending hot water generates steam in a depth where pressure decreases rapidly and it named as ‘underground boiling or evaporation’. This phenomenon causes the depletion and enrichment of the isotopic composition of δ¹⁸O and δ²H in the steam and water respectively (Bahadori et al., 2019).

Geothermometry
There as various geothermometers defined by previous researchers (e.g., Fournier, 1979; Rybach & Muffler, 1981; Nieva & Nieva, 1987; Kharaka & Marinier, 1989; D’Amore et al., 1987) to determine the equilibrium temperature of the geothermal reservoir. In some cases, the geothermometry calculations may not be obtained correctly since hydrogeological condition may not coincide with the basic calibration and assumptions of these geothermometers (Lopez–Chicano et al., 2001). The equilibrium temperature obtained for the Bazman geothermal area using the thermal water samples from S4 and S5 via geothermometers of Na–Ca–K, Na/K, Na–K–Ca with Mg correction, Na–K–Ca–Mg (Cation Composition Geothermometer (CCG)) (Nieva & Nieva, 1987), Chalcedony, Quartz–max. steam loss, Quartz no–steam loss and the modelling of the equilibrium state are listed in Table 4.

The results show that the equilibrium temperature estimated from the different geothermometers are not equal. This may be due to either the cold waters mixed with deep thermal waters and/or chemical kinetics reactions in the geothermal reservoir (Mohammadi et al., 2010). The temperatures obtained from Na/K geothermometer are even less than in the temperature of the water discharging from S4 and hence are incorrect. Moreover, the temperatures calculated from the Chalcedony geothermometer are close to the temperatures of the thermal spring’s water. As a result, these two geothermometers are not appropriate for the Bazman geothermal reservoir. The average of temperatures calculated by quartz geothermometers range from about 81 to 82 °C. Since Mg content in the thermal waters of the area is almost high, it seems that the temperatures calculated by Na–K–Ca geothermometer are not reliable. To address this issue, the CCG method (Nieva & Nieva, 1987) was applied to calculate the equilibrium temperature. According to this geothermometer, the temperature is calculated to vary from 138 °C to 139°C. These temperatures are significantly larger compared to those obtained from Quartz geothermometers. However, these values may be related to the deeper portions of the reservoir. Moreover, from modelling of the equilibrium state at temperatures of 72 °C to 68 °C the saturation indices of minerals were in equilibrium in the deep–water (Fig 6b) and this range of the temperatures were closed to the estimated temperature by quartz geothermometers. This may be due to mixing with cold groundwater. Furthermore, The Na–K–Mg triangular and the Na–K–Ca–Mg diagrams (Giggenbach, 1988) were used to evaluate the chemical equilibrium of the thermal springs and their suitability to estimate the temperature of deep–water. Based on Fig 6c, the cold waters are immature waters and the thermal water samples are plotted far from the line of full equilibrium; may due to (1) high Mg content, (2) water–rock interactions, and (3) the dilution resulted from the cold water mixing. As shown in Fig. 6c, the apparent temperature of the water–rock equilibrium is ~120 °C that is closed to the temperature estimated using the CCG method in the above. According to Fournier et al. (1976), by assuming that S4 and S5 (as non–boiling springs) are not mixed with cold waters or the geochemical equilibration is happened after mixing, it can be considered that no steam escaped from the deep thermal waters during ascending. Given the above assumptions, the parent geothermal fluid is plotted directly above S4 and S5 in Fig 7a according to obtained temperature via CCG method and steam enthalpy tables. Also according to the boiling trend line, parent geothermal fluid can generate a boiling spring with higher Cl content than about 10000 mg/L (Fig 7a).

Table 4. Temperatures of the thermal springs and deepwater (°C) calculated by chemical geothermometers

<table>
<thead>
<tr>
<th>Sample</th>
<th>Water temperature (°C)</th>
<th>Na/K</th>
<th>Na-K-Ca (β = 4/3)</th>
<th>CCG (Nieva & Nieva 1987)</th>
<th>Chalcedony</th>
<th>Quartz-max. steam loss</th>
<th>Quartz no-steam loss</th>
<th>Modelling of the equilibrium state</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>43.9</td>
<td>36</td>
<td>104</td>
<td>138</td>
<td>45</td>
<td>77</td>
<td>81</td>
<td>72</td>
</tr>
<tr>
<td>S5</td>
<td>40.1</td>
<td>48</td>
<td>103</td>
<td>139</td>
<td>46</td>
<td>78</td>
<td>82</td>
<td>68</td>
</tr>
</tbody>
</table>
Figure 7. According to Truesdell & Fournier (1977) a hypothetical plot of chloride vs enthalpy for the cold and thermal springs (a), graph of the dissolved silica vs enthalpy to determine temperature of the parent geothermal fluid (after Truesdell & Fournier (1977)) (b) the relationship between the temperature and mixing fraction of the cold water in the thermal springs (c) in the study area.

However, by assuming that the non–boiling springs (springs S4 and S5) are not equilibrated chemically after mixing, the silica content and enthalpy of the coldest water spring (S6) and thermal spring (S4) can be plotted as Fig 7b (Truesdell & Fournier, 1977). A straight line from springs S6 to S4 is plotted in Fig 7b to intersect the quartz saturation curve. One determines the equilibrium temperature of the geothermal reservoir from the intersect point. Here the equilibrium is obtained to ~145 °C.

However, the ascending deep thermal water is probably mixed with the shallow cold groundwater. To obtain the mixture percentage, we used to the following equations (Gupta & Roy, 2007):

\[EN_C X + EN_H (1 - X) = EN_S \] \hspace{1cm} (3)

\[Si_C X + Si_H (1 - X) = Si_S \] \hspace{1cm} (4)

where \(EN_C, EN_H \) and \(EN_S \) are enthalpies of the cold, hot and the thermal spring water, respectively. The fractions of the cold water and the hot deep–water are \(X \) and \((1 - X) \), respectively. Equation (4) relates the silica content of the cold (\(Si_C \)), hot (\(Si_H \)), and the thermal spring (\(Si_S \)) water, respectively. The graphical approach presented by (Fournier and Truesdell 1973) was used to solve these equations for determining the equilibrium temperature of the reservoir and the cold water mixing fraction for the thermal springs (Fig 7c). From the figure, it is obtained that the cold water mixing fraction for the thermal spring S4 is 0.94 and of the mean equilibrium temperature of the Bazman geothermal system is ~140 °C. Furthermore, the depth of groundwater circulation is calculated as follows:

\[D = \frac{(T - T_0)}{G} \] \hspace{1cm} (5)

where \(D \), \(T \), \(T_0 \) and \(G \) are the depth of circulation (m); equilibrium temperature of the reservoir (°C); temperature of the thermal spring water (°C) and the geothermal gradient (°C/m), respectively. Unfortunately, there is no deep well drilled in the area to measure the local geothermal gradient; we therefore considered two different scenarios using: (1) the natural geothermal gradient of 3°C per 100 m, and (2) the normal gradient may not be reasonable because the presence of volcano in each area demonstrates the presence of a gradient higher than natural; Therefore, the maximum possible gradient for geothermal area located over the intraplate continental crust 4.6 °C per 100 m that presented by Sutherland et al. (2017). According to temperature of 42 °C in thermal spring S4, and average of the estimated temperatures in deep–water (132 °C), the depth of thermal waters circulation was estimated to range from 1.9 km to 3 km.
Conclusion
This study indicated that the spring’s waters in the Bazman volcanic area have Cl–Na, Cl–HCO₃–Na– and SO₄–Na types where the dissolution of evaporite and carbonate minerals of the Sardar and Jamal formations was the main source of water salinity in the study area. The results also revealed that the evaporation of the rainfall either before or during percolating caused to the δ²H and δ¹⁸O enrichment the eastern cold–water springs. The isotopic composition of the thermal springs didn’t show a significant enrichment. It was also found that the stable isotope ratios in the thermal waters did not fell in the mixing zone between juvenile water and average of precipitation, indicating no significant influence of magma on the geothermal waters. The equilibrium temperatures obtained from geothermometry ranged from 45 °C to 145 °C. Due to the presence of high Mg content in the groundwater of the study area, estimated temperatures via geothermometers of Na/K, Na–K–Ca and Chalcedony was not reliable. Since estimated temperatures of the thermal reservoirs were below 190 – 210°C, a little silicate in the deep–water tended to precipitate during movement to the ground surface, while Ca, Mg, Na and K may change due to water–rock interactions. Hence, the silicate geothermometers gave higher and reliable results. Also, the results of Na–K–Mg triangular diagram, CCG and enthalpy–silica methods were acceptable. A conceptual model for Bazman geothermal system schematically depicted in Fig. 8. According to geothermometers, temperature of the deep–water was ranged from 120 °C to 145 °C. Despite the springs were situated in a small region, temperatures of the waters had high discrepancy and this suggested mixing between the ascending thermal water and the shallow cold groundwater. The presence of the thermal springs (S4 and S5) with different temperatures and similar chloride content suggested a conductive cooling system in Bazman volcano area. If this system was an adiabatic cooling system, parent geothermal fluid could generate a boiling spring with Cl content about 10000 mg/L. Finally, mixing percentage of the cold water in the thermal springs was about 94% and the circulation depth of the deep–water was estimated in the range of 1.9 to 3 km. However, it should clearly understand that without any drilling geothermal wells, it is very speculative to estimate the depth of thermal water circulation.

References
Alçiçek, H., Bülbül, A., Brogi, A., Liotta, D., Ruggieri, G., Capezzuoli, E., Mecceri, M., Yavuzer, İ., Alçiçek, M.C.,

Characterization of the Bazman geothermal field, the southeast of Iran

Chingshui geothermal field, Taiwan. Geothermics 74, 319–326.
