The middle Jurassic–Early Cretaceous pillow and massive lava flows associated with pelagic sediments in the Ghaleh-Rigi area, southern east of Iran: age and geochemistry

Document Type : Research Paper

Authors

1 Department of Geology, Mashhad Branch, Islamic Azad University, Mashhad, Iran

2 Department of Geology, Ferdowsi University of Mashhad, Mashhad, Iran

3 Department of Geology, Islamshahr branch, Islamic Azad University, Islamshahr-Tehran, Iran

4 Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran

Abstract

The Ghaleh-Rigi complex is located in northern margin of the Sanandaj–Sirjan Zone (western Iran) and the southern part of the Central Iran Micro-continent block. The study area is covered by pillow and massive lava flows associated with micro gabbro and pelagic sediments including mudstone and radiolarian ribbon chert. Geochemical analysis indicates similar mantle source for magmatic rocks. These rocks show tholeiitic affinity with depletion in high-field strength elements (HFSEs) and light rare-earth elements (LREEs). They also show enrichment in large-ion lithophile elements (LILEs) in primitive mantle normalized multi-element diagrams. All samples show variable depletion in Th followed by depletion of HFSE and trace element concentrations and negative Nb anomaly (Th/Nb=0.23-035), which is a typical characteristic from magmas related to subduction zone. In addition, ratio of Y/Nb against Zr/Nb and Ce/Y against Zr/Nb and also REE flat patterns are similar to N-MORB-like source. These features suggest generation of magma in the back-arc basin. According to geochemical and petrogenesis studies, these rocks shows around 10% partial melting of a mixed spinel–garnet-bearing source composed of 50% PM and 50% MORB source. Based on bio-chronological investigation, the radiolarian cherts associated with volcanic rocks show Early Bajocian to Berriasian; Callovian- Valanginian; and Oxfordian- Valanginian ages.

Keywords


Article Title [فارسی]

-

Agard, P., Monie, P., Gerber, W., Omrani, J., Molinaro, M., Meyer, B., Labrousse, L., Vrielynck, B., Jolivet, L., Yamato, P., 2006. Transient, synobduction exhumation of Zagros blueschists inferred from P–T, deformation, time, and kinematic constraints: Implications for Neotethyan wedge dynamics. Journal of Geophysical Research Atmospheres, 111(B11):1–40.##
Aita, Y., Okada, H., 1986. Radiolarians and calcareous nannofossils from the uppermost Jurassic and Lower Cretaceous strata of Japan and Tethyan regions. Micropaleontology, 32(2): 97–128.##
Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo– Tethys remnants in northeastern Iran, Geological Society of America Bulletin, 103: 983–992.##
Alavi, M., 1994. Tectonics of Zagros orogenic belt of Iran, new data and interpretation. Tectonophysics, 229: 211–238.##
Arvin, M. Robinson, P. T., 1994. The petrogenesis and tectonic setting of lavas from the Baft ophiolitic mélange, southwest of Kerman, Iran. Canadian Journal of Earth Sciences, 31: 824–834.##
Arvin, M., Shokri, E., 1997. Genesis and eruptive environment of basalts from the Gogher ophiolitic mélange, southwest of Kerman, Iran. Ofioliti, 22: 175–182.##
Babazadeh, S.A., Dewever, P., 2004. Radiolarian Cretaceous age of Soulabest radiolarites in ophiolite suite of eastern Iran. Bulletin of the Geological Society of France, 175(2): 121–129. (in French)##
Bagheri, S. Stampfli, G. M., 2008. The Anarak, Jandaq and Posht–e–Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications. Tectonophysics, 451:123–55.##
Baroz, R., Macaudiere, J., Montigny, R., Noghreyan, H., Ohnenstetter, M., Rocci, G., 1984. Ophiolites and related formations in the central part of the Sabzevar range (Iran) and possible geotectonic reconstructions. Neues Jahrbuch für Geologie und Paläontologie, 168:358–388.##
Baxter, A.T., Aitchison, J.C., Zyabrev, S.V., Ali, J.R., 2011. Upper Jurassic radiolarians from the Naga Ophiolite, Nagaland, northeast India. Gondwana Research, 20(2–3): 638–644.##
Bedard, J.H., 1994. A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chemical Geology, 118 (1–4):143– 153.##
Bejleri, A., Myfttu, M., Rrela, M., Bibera, A., 2012. The development of a database for radiolarian assemblages from the 258 Jahangiri et al. Geopersia, 10 (2), 2020 Kalur Cherts of Albania. International Journal of Computer Science Issues 3, 9(2): 459–465.##
Berberian, M., King, G.C.P., 1981. Toward a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18:210–265.##
Bortolotti, V., Chiari, M., Goencueoglu, M. C., Principi, G., Saccani, E., Tekin, U. K., Tassinari, R., 2018. The Jurassic– Early Cretaceous basalt–chert association in the ophiolites of the Ankara Mélange, east of Ankara, Turkey: age and geochemistry. Geological Magazine, 155(2): 451–478.##
Brocker, M., Fotoohi Rad, G. R., Thunissen, S., 2011. New time constraints for HP metamorphism and exhumation of mélange rocks from the Sistan suture zone, eastern Iran. An abstract paper in Symposium: Tectonic Crossroads: Evolving Orogens of Eurasia– Africa–Arabia. Turkey, Ankara.##
Cabanis, B., Lecolle, M., 1989. The diagram La/10 – Y/15 – Nb/8: A tool for the discrimination of the volcanic series and in evidence of the mixture of crustal contamination. Account Rendus of the Academy of Sciences, 309(2) :2023–2029. (in French)##
Davoudzadeh, M., 1972. Geology and Petrography of the Area North of Nain, Central Iran. Geological Survey of Iran, Report 14, 89 p.##
Desmons, J., Beccaluva, L., 1983. Mid–oceanic ridge and island arc affinities in ophiolites from Iran: paleogeographic implication. Chemical Geology, 39: 39–63.##
Dewey, J.F., Pitman, W.C., Ryan, W.B.F., Bonnin, J., 1973. Plate tectonics and the evolution of the alpine system, Geological Society of America Bulletin, 84(10): 3137–3180.##
Dilek, Y., Furnes, H., 2019. Tethyan ophiolites and Tethyan seaways. Journal of the Geological Society, 176:899–912.##
Elthon, D., 1979. High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278: 514–518.##
Foreman, H. P., 1973. Radiolaria from DSDP Leg 20. In Heezen, B. C, MacGregor, I. D., et al., Initial Reports, Deep Sea Drilling Project, Part II: Special Studies, 13:249–305.##
Gansser, A., 1959. Asseralpine ophiolith problem. Eclogae Geologicae Helvetiae, 52(2):659–680.##
Ghazi, J.M., Moazzen, M., Rahgoshay, M., Shafaii Moghadam, H., 2010a. Mineral chemical composition and geodynamic significance of peridotites from Nain ophiolite, central Iran. Journal of Geodynamics, 49: 261–270.##
Ghazi, J.M., Moazzen, M., Rahgoshay, M., Shafaii Moghadam, H., 2011. The geodynamic setting of the Nain ophiolites, Central Iran: evidence from chromian spinels in the chromitites and associated rocks. Ofioliti, 36(1): 59–7.##
Ghazi, J.M., Rahgoshay, M., Shafaii Moghadam, H., Moazzen, M., 2010b. Geochemistry of gabbroic pockets of a mantle sequence in the Nain ophiolite (Central Iran): constraints on petrogenesis and tectonic setting of the ophiolite. Journal of Mineralogy and Geochemistry, 187(1): 49–62.##
Golonka, J., 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic.Tectonophysics, 38:235–273.##
Göncüoglu, M.C., Sayit, K., Kagan Tekin, U., 2010. Oceanization of the northern Neotethys: Geochemical evidence from ophioliticmelange basalts within the İzmir– Ankara suture belt, NW Turkey. Lithos, 116:175–186.##
Göncüoglu, M.C., Yaliniz, K., Tekin, U.K., 2006. Geochemistry, tectono–magmatic discrimination and radiolarian ages of basic extrusives within the IzmirAnkara Suture Belt (NW Turkey): time constraints. Ofioliti, 31(1): 25–38.##
Goričan, S., Carter, E.S., Dumitrică, P., Whalen, P.A., Hori, R.S., De Wever, P., O’Dogherty, L., Matsuoka, A., Guex, J.,2006. Catalogue and systematics of Pliensbachian, Toarcian and Aalenian radiolarian genera and species. ZRC Publishing, 450 p.##
Gribble, R.F., Stern, R.J., Newman, S., Bloomer, S.H., O'Hearn, T., 1998. Chemical and isotopic composition of lavas from the northern Mariana Trough; implications for magma genesis in back–arc basins. Journal of Petrology, 39:125– 154.##
GSI, 2011. Geologic map of the Ghaleh–Rigi Quadrangle, Geological Survey of Iran. Scale 1:25,000.##
Haase, K.M., Stoffers, P., Garbe–Schönberg, C.D., 1997. The petrogenetic evolution of lavas 432 from Easter Island and neighbouring seamounts, near–ridge hotspot volcanoes in the SE 433 Pacific. Journal of Petrology, 38(6):785–813.##
Haghipour, A., 1974. Geological survey of the Biabanak–Bafq region (Central Iran); Petrology and tectonics. Ph.D thesis, Grenoble Scientific and Medical University, 403p. (in French)
Hart, W.K., Wolde, Gabriel G., Walter, R.C., Mertzman, S.A., 1989. Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. Journal of Geophysical Research, 94:7731–7748.##
Hassanipak, A.A., Ghazi, A.M., 2000. Petrochemistry, 40Ar–39Ar ages and tectonics of the Nain Ophiolite, Central Iran. GSA Annual Meeting, Reno, pp. 237–238.##
Hassig, M., Rolland, Y., Sosson, M., 2015. From seafloor spreading to obduction: Jurassic evolution of the northern branch of the Neotethys in the Northeastern Anatolian and lesser Caucasus regions. Geological Society London Special Publication, 428:41–60.##
Hattori, I., Sakamoto, N., 1989. Geology and Jurassic radiolarians from manganese nodules of the Kanmuriyama– Kanakusadake area in the Nanjo Massif. Fukui prefecture, central japan. Bulletin of the Fukui Municipal Museum of Natural History, 36:25–79. (In Japanese with English abstract)The middle Jurassic–Early Cretaceous pillow and massive lava flows … 259##
Hawkesworth, C.J., Hergt, J.M., Ellam, R.M., McDermott, F., 1991. Element fluxes associated with subduction related magmatism. Philosophical Transactions of the Royal Society, 335:393–405.##
Hickey –Vargas, R., Roa, H.M., Escobar, L.L., Frey, F.A., 1989. Geochemical varitaions in Andean basaltic and silicic lavas from the Villarrica–Lanin volcanic chain (39.5 S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contribution to mineralogy and Petrology, 103(3): 361–386.##
Johnson, K.T.M., 1998. Experimental determination of partition coefficients for rare earth and high –field– strength elements between clinopyroxene, garnet and basaltic melt at high pressures. Contributions to Mineralogy and Petrology, 133:60– 68.##
Kelemen, P.B., Shimizu, N., Dunn, T., 1993. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth and Planetary Science Letters, 120:111 – 134.##
Knipper, A., Ricou, L. E., Dercourt, J., 1986. Ophiolite as indicator of the geodynamic evolution of the Tethyan Ocean. Tectonophysics 123, 213–240.##
Kozur, H., 1984. New radiolarian taxa from the Triassic and Jurassic. Geologisch–Paläontologische Mitteilungen Innsbruck, 13(2):49–88.##
LeBas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of
volcanic rocks based on the total alkali–silica diagram. Journal of Petrology, 27(3): 745–750.##
Lukeneder, A., Smrečková, M., 2005. An Early Cretaceous radiolarian assemblage: palaeoenvironmental and palaeoecological implications for the Northern Calcareous Alps (Barremian, Lunz Nappe, Lower Austria). 1st International Meeting on Correlation of Cretaceous Micro– and Macrofossils –Vienna. Series A for mineralogy and petrography, geology and paleontology, anthropology and prehistory, 23–57.##
Marroni M., Göncüoğlu, C., Frassi, C., Sayit, K., Pandolfi, L., Ellero, A., Ottria, G., 2019. The Intra–Pontide ophiolites in Northern Turkey revisited: From birth to death of a Neotethyan oceanic domain. Geoscience Frontiers, in press, https://doi.org/10.1016/j.gsf.2019.05.010.##
Matsuoka, A., 1983. Middle and Late Jurassic radiolarian biostratigraphy in the Sakawa and adjacent areas, Shikoku, Southwest Japan. Journal of Geoscience, Osaka City University, 26:1–48.##
Matsuoka, A., 1992. Jurassic and Early Cretaceous radiolarians from ODP Leg 129, Sites 800 and 801, western Pacific ocean. Proceedings of the Ocean Drilling Program, Scientific results, College Station, TX, USA, 129:203–220.##
McCall, G.J.H., 1997. The geotectonic history of the Makran and adjacent areas of southern Iran. Journal of Asian Science, 15:517–531.##
McKenzie, D., O'Nions, R.K., 1991. Partial melt distributions from inversion of rare earth element concentr ations. Journal of Petrology, 32:1021 – 1091.##
Mehdipour Ghazi, J., 2008. Geochemistry and petrology of mantle sequence in Nain ophiolite. M.Sc. Thesis. Shahid Beheshti University, Tehran, Iran, 225 p. (in Persian)##
Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth–Science Reviews, 37:215–244.##
Moghadam, H.S., Whitechurch, H., Rahgoshay, M., Monsef, I., 2009. Significance of Nain–Baft ophiolitic belt (Iran):##
Short–lived, transtensional Cretaceous back–arc oceanic basins over the Tethyan subduction zone. Comptes Rendus Geoscience, 341(12), pp.1016–1028.##
Moores, E. M., Kellogg, L. H., Dilek, Y., 2000. Tethyan ophiolites, mantle convection, and tectonic `historical contingency': a resolution of the `ophiolite conundrum. In: Dilek, Y., Moores, E. M., Elthon, D. and Nicolas, A. (eds)##
Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America, Special Papers, 349:3–12.##
Mullen, E.D., 1983. MnO/TiO2/P2O5: A Minor Element Discriminant for Basaltic Rocks of Oceanic Environments and Its Implications for Petrogenesis. Earth and Planetary Science Letters, 62:53–62.##
Nadimi, A., 2007. Evolution of the Central Iranian basement. Gondwana Research, 12:324–33.##
O'Dogherty, L., Carter, E.S., Goričan, Š. and Dumitrica, P., 2010. Triassic radiolarian biostratigraphy. Geological Society, London, Special Publications, 334(1):163–200.##
Pearce, J.A., 1983. Role of the sub–continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J., Norry, M.J. (Eds.), Continental Basalts and Mantle Xenoliths, 230–249.##
Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100:14–48.##
Pearce, J.A., Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19:290–300.##
Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23:251– 285.##
Peate, D.W., Pearce, J.A., Hawkesworth, C.J., Colley, H., Edwards, C.M.H., Hirose, K., 1997. Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable wedge composition. Journal of Petrology, 38:1331–260 Jahangiri et al. Geopersia, 10 (2), 2020
1358.##
Pessagno, E. A., 1977. Upper Jurassic Radiolaria and Radiolarian Biostratigraphy of the California coast range. Micropaleontology, 23(1):117–134.##
Pessagno, E. A., Whalen, P., 1982. A Middle Jurassic (upper Bajocian) Radiolarian Assemblage from Snowshoe Formation, east–central Oregon. British Columbia Micropaleonotology, 28(2):11–189.##
Pirnia, T., Arai, S., Torabi, G., 2010. Post–deformational impregnation of depleted MORB in Nain lherzolite (Central Iran). Journal of Mineralogical and Petrological Sciences, 105:74–79.##
Pirnia, T., Saccani, E., Torabi, G., Chiari, M., Goričan, S., Barbero, E., 2019. Cretaceous tectonic evolution of the Neo– Tethys in Central Iran: Evidence from petrology and age of the Nain–Ashin ophiolitic basalts. Geoscience Frontiers. In press. https://doi.org/10.1016/j.gsf.2019.02.008.##
Rahgoshay, M., Ghazi, M.J., Shafaii Moghadam, H., 2008. Geochemistry and petrology of mantle sequence in Nain ophiolite. Geosciences Scientific Quarterly Journal, 71:31–44. (in Persian)##
Rahmani, F., Noghreyan, M., Khalili, M., 2007. Geochemistry of sheeted dikes in the Nain ophiolite (Central Iran). Ofioliti, 32(2): 119–129.##
Richards, J.P., 2014. Tectonic, Magmatic and Metallognic Evolution of the Tethyan Orogen: From Subduction to Collision. Ore Geology Reviews, 70:323–345.##
Robertson, A.H.F., 2007. Overview of tectonic settings related to the rifting and opening of Mesozoic ocean basins in the Eastern Tethys: Oman, Himalayas and Eastern Mediterranean regions. In: Karner, G., Manatschal, G., Pinheiro, L. (Eds.), Geological Society, London Special Publication, 282: 325–389.##
Robini, C. Gorican, S., Guillocheaui, F., Razin, P., Dromart, G. Mosaffa, H., 2010. Mesozoic deep–water carbonate deposits from the southern Tethyan passive margin in Iran (Pichakun nappes, Neyriz area): biostratigraphy, facies sedimentology and sequence stratigraphy. Geological Society, London, Special Publications, 330 (1):179–210.##
Saadat, S., Stern, C.R., 2011. Petrochemistry and genesis of olivine basalts from small monogenetic parasitic cones of Bazman stratovolcano, Makran arc, southeastern Iran. Lithos, 125:609–617.##
Saccani, E., 2018. A new method of discriminating different types of post–Archean ophiolitic basalts and their tectonic significance using Th–Nb and Ce–Dy–Yb systematics. Geoscience Frontiers, 6(4):481–501.##
Saccani, E., Allahyari, K., Beccaluva, L., Bianchini, G., 2012. Geochemistry and petrology of the Kermanshah ophiolites (Iran): implication for the interaction between passive rifting, oceanic accretion, and plume–components in the Southern Neo–Tethys Ocean. Gondwana Research 24, 1:392–411.##
Saccani, E., Photiades, A., Beccaluva, L., 2008. Petrogenesis and tectonic significance of Jurassic IAT magma types in the Hellenide ophiolites as deduced from the Rhodiani ophiolites (Pelagonian zone, Greece). Lithos, 104(1–4): 71–84.##
Saunders, A.D., Storey, M., Kent, R.W., Norry, M.J., 1992. Consequences of plume– lithosphere interactions. In: Storey,##
B.C., Alabaster, T., Pankhurst, R.J. (Eds.), Magmatism and the Causes of Continental Break–up: Geological Society,London, Special Publications, 68: 41–60.##
Sengor, A.M.C., Kidd, W.S.F., 1979. The post–collisional tectonics of the Turkish–Iranian Plateau and a comparison with Tibet: Tectonophysics, 55(3–4):361–376.##
Shafaii Moghadam, H., Stern, R.J., 2011. Geodynamic evolution of Upper Cretaceous Zagros ophiolites: formation of oceanic lithosphere above a nascent subduction zone. Geological Magazine ,148: 762–801.##
Shafaii Moghadam, H., Stern, R.J., Rahgoshay, M., 2010. The Dehshir ophiolite (central Iran): Geochemical constraints on the origin and evolution of the Inner Zagros ophiolite belt. Geological Society America Bulletin, 122:1516–1547.##
Shahabpour, J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences, 24:405–417.##
Shaw, D.M., 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta, 34(2):237–243.##
Shojaat, B., Hassanipak, A.A., Mobasher, K., Ghazi, A.M., 2003. Petrology, geochemistry and tectonics of the Sabzeva ophiolite, North Central Iran. Journal of Asian Earth Science, 21:1053–1067.##
Stampfli, G.M., Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic
constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters, 196:17–3.##
Stampfli, G.M., Borel, G.D., Cavazza, W., Mosar, J., Ziegler, P.A., 2001. Palaeotectonic and palaeo geographic evolution of the western Tethys and Peri–Tethyan domain (IGCP Project 369). Episodes 24, 4:222–227.##
Stocklin, J., 1968. Structural history and tectonics of Iran: A review: The American Association of Petroleum Geologists Bulletinm, 52:1229–1258.##
Stocklin, J., 1974. Possible ancient continental margin in Iran. In: Burke, C. A. and Drake, C. L. (Eds.): The Geology of Continental Margins. Springer–Verlag, New York, 873–877.##
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Geological Society of London Special Publication,42: 313–34.##
The middle Jurassic–Early Cretaceous pillow and massive lava flows … 261
Takin, M. 1972. Iranian geology and continental drift in the Middle East. Nature, 235:147–150.##
Taylor, S.R., McLennan, S.M., 1995. The Geochemical Evolution of Continental Crust. Reviews of Geophysics, 33:241–265.##
Thurow, J.W., 1988. Cretaceous radiolarians of the North Atlantic Ocean: ODP Leg 103 (sites 638, 640, and 641) and DSDP legs 93 (Site 603) and 47B (Site 398). In: Boillot, G; Winterer, EL; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 103:379–418.##
Volpe, A.M., Macdougall, J.D., Lugmair, G.W., Hawkins, J.W., Lonsdale, P., 1990. Fine–sale isotopic variation inMariana Trough basalts: evidence for heterogeneity and a recycled component in backarc basin mantle. Earth and Planetary Science Letters, 100:251–264.##
Weber–Diefenbach, K., Davoudzadeh, M., Alavi Tehrani, N., Lench, G., 1986. Paleozoic ophiolites in Iran, Geology, geochemistry and geodynamic implication. Ofioliti, 11:305–338.##
Yeh, K., 2011. A Middle Jurassic (Upper Bajocian) Radiolarian Assemblage from Snowshoe Formation, East–Central Oregon. Collection and research, 24:1–77.##
Zhang, C., Manheim, F.T., Hinde, J., Grossman, J.N., 2005. Statistical characterization of a large geochemical database and effect of sample size. Applied Geochemistry, 20:1857–1874.##