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Abstract 
The Ghaleh-Rigi complex is located in northern margin of the Sanandaj–Sirjan Zone (western Iran) and the southern part of the 
Central Iran Micro-continent block. The study area is covered by pillow and massive lava flows associated with micro gabbro and 
pelagic sediments including mudstone and radiolarian ribbon chert. Geochemical analysis indicates similar mantle source for 
magmatic rocks. These rocks show tholeiitic affinity with depletion in high-field strength elements (HFSEs) and light rare-earth 
elements (LREEs). They also show enrichment in large-ion lithophile elements (LILEs) in primitive mantle normalized multi-element 
diagrams. All samples show variable depletion in Th followed by depletion of HFSE and trace element concentrations and negative Nb 
anomaly (Th/Nb=0.23-035), which is a typical characteristic from magmas related to subduction zone. In addition, ratio of Y/Nb 
against Zr/Nb and Ce/Y against Zr/Nb and also REE flat patterns are similar to N-MORB-like source. These features suggest 
generation of magma in the back-arc basin. According to geochemical and petrogenesis studies, these rocks shows around 10% partial 
melting of a mixed spinel–garnet-bearing source composed of 50% PM and 50% MORB source. Based on bio-chronological 
investigation, the radiolarian cherts associated with volcanic rocks show Early Bajocian to Berriasian; Callovian- Valanginian; and 
Oxfordian- Valanginian ages. 
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Introduction 
The paleotectonic history of Iran has characterized by 
the existence of numerous micro continental blocks, 
which has recorded the fragmentation of Gondwana-
derived crustal segments in Permian time (Golonka, 
2004; Robertson, 2007; Saccani et al., 2012; Stampfli 
et al., 2001). Due to the complex interaction between 
individual blocks and a severe lack of robust 
geochronological evidence, it has not been yet possible 
to fully resolve the regional geodynamic framework. 
Detailed knowledge about the existence and life span of 
oceanic basins surrounding individual continental 
segments plays a key role in understanding the 
geotectonic history that have been strongly affected by 
various stages of the Arabia–Eurasia collision and 
closing of different Tethyan oceanic basins (e.g. 
Marroni et al., 2019). Many ophiolites in Iran are 
remnants of Neotethys ocean basins and belong to an 
ophiolite belt extending from Cyprus to Oman that 
marks an important segment of the Alpine–Himalayan 
orogeny (Dilek et al., 2019; Shafaii Moghadam & 
Stern, 2011; and references in Brocker et al., 2011). 
The Iranian ophiolites are part of Tethyan ophiolite belt 

extending from eastern Europe, through Mediterranean 
and middle east, to eastern Asia (Moores et al., 2000; 
Shojaat et al., 2003; Zhang et al., 2005; Shafaii 
Moghadam et al., 2010; Shafaii Moghadam & Stern, 
2011) (Fig. 1a). The ophiolites of Iran form two distinct 
groups based on their age and abundances, the less 
abundant ones are Paleozoic age (Weber-diefenbach et 
al., 1986) along the paleo-Tethys suture, (Fig. 1) and 
the more abundant ones are Mesozoic ophiolites (Alavi, 
1991; Arvin & Robinson, 1994). They have divided 
into three sub belts (Takin, 1972; Stocklin, 1968, 1974; 
McCall, 1997). The first one (i) ophiolites of the Zagros 
suture zone, including the Neyriz and Kermanshah 
ophiolites, which appear to be coeval with the Oman 
(Smail) ophiolites emplaced onto Arabian continental 
margin. The second (ii) un-fragmented ophiolites of the 
Makran accretionary prism, which includes Bande 
Zyarat, Dar Anar and Mokhtar Abad (southeast of Iran 
ophiolites). Lastly, the third (iii) ophiolites and colored 
mélanges that mark the boundaries of the Central Iran 
microplate including Shahar Babak Nain, Baft, 
Sabzavar, and Tchehel Kureh ophiolites (Fig.1b).  
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Figure 1. (a) Topographic relief map of the Alpine- Himalayan Tethyan organic belt, showing major structures, Tethyan suture 
(Richards, 2014) black line= Neotethys (Neogene), dark grey line= Neotethys (late Mesozoic-paleozoic), pale grey line= Neotethys 
(Mesozoic) blue line= paleotethys (Paleozoic), white vertical oral= study area (b) Distribution of different ophiolite complexes in Iran 
(Mehdipour Ghazi et al., 2010). Kh: Khoy, Rs: Rasht, Kr: Kermanshah, Ny: Neyriz, Bz: Bande-Zyarat, Ir: Iranshahr, Es: Esfandagheh, 
Ba: Baft, Sh, Shahre-Babak, Na: Nain, Sb: Sabzevar, Ms: Mashhad, Bj: Birjand, Tk: Tchehel Kureh. 
 

Throughout the world, in various tectonic 
settings, in the highest part of oceanic lithosphere, 
there are pillow and massive lava flows 
accompanied with pelagic sediment that belong to 
deep oceanic basin and often are associated with 
ophiolitic rocks and colored mélange complex. The 
presence and continuity pelagic sediment with 
pillow and massive lava flows indicate sub marine 
volcanic activity in deep portion of basin and 
pulling –catching the bottom of the basin. The 
location of the pillow lavas is probably near the 
outlet that forms continuous flood of lava, which 
after rapid cooling creates a typical structure of 
pillow lavas. In the study area, Pillow and massive 
lava flows are associated with pelagic sediment 
such as mudstone and radiolarian chert. The 
duration and time of oceanic processes can be 
concluded using biostratigraphy interpretation of 
the radiolarian chert (e.g. Bortolotti, et al., 2018). In 
this paper, we present result on geochemistry, 
petrology and biostratical dating of Ghaleh-Rigi 
pillow and massive lava flows associated with 
pelagic sediment. The goal of this paper is to use 
field data, petrographic analyses, and geochemical 
data, including REE and incompatible trace element 
data to identify different lithology and petrogenesis 
processes and possible tectonic environments of 
formation of this pillow and massive lava flows. 
The lithological and chemical signature of the 
mantle section can provide further insights on the 
tectonic setting where the magmatic rocks have 
formed. 
 

Geological setting 
The study area is located in the 28˚ 30' 41" northern 
latitude and 57˚ 29' 30" eastern longitude in the 
southern part of Nain-Baft suture and southern 
margin of Central Iran Micro-continent (CIM) 
block (Fig. 1b). Central Iran is comprised of 
metamorphic successions and plutonic suites (e.g. 
Chapedony and Posht-e-Badam metamorphic 
complexes: Haghipour, 1974; Nadimi, 2007; 
Precambrian plutonism: Berberian, 1981) and 
overlying Jurassic–Cretaceous and subordinate 
Paleogene covered formations.  

Most importantly, Central Iran is surrounded by 
several ophiolitic domains (Nain–Baft, Sabzevar, 
Sistan; Fig. 1c) interpreted as minor oceanic 
seaways showing discontinuous oceanic crust 
emplacement and separated CIM from Eurasia (e.g. 
Stöcklin, 1974; Berberian & King, 1981; Knipper et 
al. 1986; Arvin & Robinson, 1994; Arvin & Shokri 
1997; Shojaat et al. 2003). These domains 
correspond to the Upper Cretaceous to Paleocene-
radiolarite and ophiolite ‘colored Melange’ of 
Gansser (1959) and to the inner Mesozoic oceans of 
McCall (1997). The Nain-Baft suture zone is 
located northward of the Mesozoic magmatic arc of 
the active margin of the Central Iranian block, 
reported in literature also as Sanandaj-Sirjan Zone. 
The Sanandaj-Sirjan Zone is a narrow zone of 
highly deformed rocks dominated by Mesozoic 
rocks, while the Paleozoic rocks are generally rare 
and restricted to the southeast in this zone. Several 
other relatively dismembered fragments of Neo-
Tethyan ophiolite massifs occur along Sanandaj-
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Sirjan zone on the western side of the CIM, 
(Shojaat et al., 2003). All massifs have tilted and 
fragmented highly into several tectonic slices with 
many strike–slip fault offsets. Several tectonic 
episodes are responsible for stacking and 
displacement of these tectonic slices. The ophiolitic 
rocks in the CIM are strongly imbricated and 
sheared by sub-vertical faults and shear zones 
(Alavi, 1994). The Nain–Baft ophiolite and the 
Sabzevar oceanic basins are thought to have opened 
during Late Cretaceous time and closed during 
Paleocene time (95–60 Ma; Davoudzadeh, 1972; 
Baroz et al., 1984; Sengör et al., 1988; Arvin & 
Robinson, 1994; Stampfli & Borel, 2002; Shojaat et 
al., 2003). Few radiometric age constraints are 
available. Paleomagnetic data indicate that the CIM 
has rotated anti-clockwise during the Jurassic and 
opening of the Nain-Baft Ocean (Sengör, 1990). 
The Nain–Baft ophiolitic sutures are interpreted by 
several geologists as (i) the occurrence of a narrow 
oceanic basin like the Red Sea, between the Lut 
block and the active continental margin of the 
Iranian block known as Sanandaj–Sirjan Zone (e.g. 
Berberian & King, 1981); (ii) as a Cretaceous arc 
basin of Tethyan subduction (Desmons & 
Beccaluva, 1983; Hassanipak & Ghazi, 2000) and 
(iii) as Late Cretaceous Nain–Baft back arc basin 

(e.g. Arvin & Robinson, 1994; Shahabpour, 2005; 
Agard et al., 2006; Rahmani et al., 2007; 
Mehdipour Ghazi, 2008; Rahgoshay et al., 2008; 
Shafaii Moghadam et al., 2009; Pirnia et al., 2010; 
Ghazi et al., 2010 a, b). (iv) the Nain-Baft basin 
underwent a counter-clockwise rotation in 
the Cenozoic, which displaced them in their present 
day position from an original northeastward 
location, and they firmed in arc-forearc setting was 
active in the Early Cretaceous (Pirnia et al., 2019).  
 
Methods 
Several assemblages of Radiolarian banded chert 
have been studied for biostratigraphy and the results 
are presented in Table 1 and 2. Samples were 
collected from all rock units and standard 
petrographic thin sections were prepared. Fifteen 
least-altered samples were selected for major and 
trace element geochemical analysis. Major elements 
in addition to Sc, Ba, and Ni were determined by 
inductively-coupled plasma atomic emission 
spectrometry (ICP-AES), whereas the rest of the 
trace elements including rare earth elements were 
analyzed by inductively-coupled plasma mass 
spectrometry (ICP-MS, ACME Analytical 
Laboratories Ltd, Vancouver, Canada performed all 
analyses).  

 
Table 1. Compilation of chronological data, including extension of the radiolarian fauna, volcano-sedimentary magmatic series of the 
Ghaleh-Rigi area.  
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Table 2. Simultaneous time span of radiolarians with volcanic activity of the Ghaleh-Rigi area. 

 
 

It must be noted that all reported major element 
values were normalized to 100% on a volatile-free 
basis. Major and trace element concentrations of 
Ghaleh-Rigi micro gabbros and basalts are 
presented in Table 3.  
 
Petrography 
Geological map of the study area was prepared in 
the scale of 1:5000 (Fig. 2). Briefly‚ the most 
important rock units in this area from the oldest to 
the youngest are presented in the following. 
 
Crystal Vitric Tuff Unit (CVTU) 
This unit mainly consists of crystal vitric tuffs and 
is located in the east of Ghaleh-Rigi area (Fig. 2). It 
is located in lowest part of stratigraphic column and 
has been intruded by the Miocene dyke and other 
intrusive bodies (GSI, 2011). Two samples were 
picked up for petrography studies. The texture of 
these rocks is clastic and the main forming minerals 
are quartz, plagioclase, biotite and opaque minerals. 
Other minerals are, epidote, chlorite, zeolite, and 
calcite, all were formed in a glassy groundmass.  
 
Lower Pelagic Sediment Unit 
This unit is composed of pelagic sediment including 
mudstone, silty mudstone and chert associated with 
sporadic pillow and massive lava flows (minor) as 
intercalation (Fig. 2). Carbonate, clay, quartz, 
chlorite, epidote, zeolite, and opaque minerals are 
present. Chloritization and silicification are the 
most important alteration trends. This unit has 
copper‚ lead‚ zinc and gold massive sulfide 
mineralization (VMS). 

 
Lower Volcano-Sedimentary Unit (LVSU)  
This unit is mainly composed of basaltic pillow and 
massive lava flows associated with pelagic 
sediment (mudstone, silty mudstone, ribbon 
radiolarian chert) as intercalation. Volumetric, 
basaltic pillow and massive lava flows are the most 
important parts of this unit. A few samples were 
taken for the petrography and chemical analysis. 
There is a layer of pelagic deep-sea sediments 
including mudstones, silty mudstones, and a thin 
fine-grained sandstone with scattered basaltic flows 
associated with one meter thick micro gabbro. 
 
Middle Pelagic Sediment Unit (MPSU)  
This unit is located in the middle part of study area 
and completely is composed of pelagic sediment 
including cream to pale brown tuffaceous 
limestone, micritic limestone, mudstone, red to 
purple banded radiolarian chert, fine grain siltstone 
and shale (Fig. 2). Thin bedding and uniformity are 
the unique features of this unit. Samples were taken 
from this unit for bio-chronology and petrography 
(Gr-95-274). These rocks are very fine-grained and 
the textures are mainly microlithic and crystalline to 
cryptocrystalline. Carbonate crystals, which are 
mostly calcite, make up 65% of the rock. Other 
minerals are quartz, feldspar, pyroxene and volcanic 
fragments. 
 
Upper pillow and Massive lava flows unit (UPMLFU)  
Pillow and massive lava flows are the most 
important parts of this unit with pelagic sediments 
intercalation. Total compositions of these lavas are 
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mainly basalt and some of them slightly tend to be 
andesitic basalt (Fig. 3a, b). The main textures of 
the rocks are porphyry (Fig. 3d), however, micro 
porphyry, intergranular, glomero-porphyritic, 
variolitic, and vesicular textures are also observed. 
Samples were taken from this unit for bio-
chronology (Gr-95-276), petrography (Qr-95-89 

and Gr-95-277) and chemical analysis (Qr-95-89). 
Secondary minerals such as calcite, chlorite, 

zeolite and quartz have filled cavities in basalts. 
Plagioclase, pyroxene and opaque minerals observed 
in the matrix of microlith (Fig. 3d). Olivine, 
Plagioclase and clinopyroxene are the main minerals 
and Fe-oxides and titanite are the accessory minerals. 

 
Table 3. Concentration of the major, trace and rare earth elements for the Ghaleh-Rigi basalts and gabbro. 

Gabbro Pillow and massive lava  

DAR-
203 

GR-
316 

Qr.56 Qr.55 Qr.22 Qr.17 Qr.13 Gr.300 Gr.287 Qr.217 Qr.89 Qr.46 Qr.44 Dar.212 Dar.208 Samples 

47.6 48.5 47.9 47 49 46.3 47.2 45.9 47.6 47.5 46.8 47.9 45.5 48.3 48.9 SiO2 

15.65 16.05 15.5 16.55 13.35 17.45 16.05 16.35 15.45 16.8 15.55 15.15 16.1 15.25 15.2 Al2O3 

10.55 11.3 10.7 9.79 10.35 10.9 11.95 10.5 11.1 9.21 9.57 9.26 9.4 10.5 10.75 Fe2O3 

10.9 9.4 10.5 11.1 9.05 11.25 11.8 11.6 10.6 11.3 12.2 12.9 12.85 10.65 9.88 CaO 

7.35 7.69 6.88 6.9 8 6.77 6.43 8.11 7.69 6.04 7.24 7.15 7.1 7.14 6.73 MgO 

2.62 3.26 2.91 2.73 3.26 3.15 2.56 2.84 3.46 3.27 2.15 2.59 2.37 3.25 3.47 Na2O 

0.18 0.52 0.56 0.24 0.36 0.47 0.12 0.08 0.47 0.36 0.89 0.17 0.19 0.39 0.39 K2O 

1.04 1.04 1.01 0.96 0.94 1.09 1.19 0.96 0.99 0.83 0.82 0.8 0.79 0.99 1.11 TiO2 

0.18 0.19 0.19 0.15 0.19 0.17 0.18 0.2 0.2 0.14 0.55 0.22 0.53 0.18 0.2 MnO 

0.08 0.09 0.08 0.06 0.07 0.08 0.11 0.09 0.08 0.08 0.09 0.08 0.05 0.08 0.09 P2O5 

73.8 205 102.5 116 347 141 31.7 124 117.5 130.5 536 49.6 102.5 110.5 80 Ba 

6.7 7.4 6.6 5.8 7 6.6 8.3 6.6 6.7 5.3 5.5 6 5.6 6.7 6.8 Ce 

220 110 160 200 220 140 100 290 220 150 240 260 280 220 110 Cr 

0.26 0.67 1.81 0.61 0.54 0.69 0.39 2.65 2.22 0.48 0.83 0.06 0.2 0.46 0.33 Cs 

4.05 4.07 3.94 3.38 3.98 3.66 4.32 3.94 3.89 3.01 3.18 3.23 3.33 3.77 4.38 Dy 

2.54 2.75 2.48 2.25 2.54 2.64 2.76 2.46 2.64 2 2.06 2.23 2.25 2.66 2.73 Er 

0.8 0.89 0.84 0.73 0.95 0.9 1.02 0.8 0.87 0.69 0.66 0.69 0.68 0.83 0.92 Eu 

15.7 17.6 16.3 16.6 15.1 17 18.1 19.1 15.9 15.7 13.8 14.5 16.8 16.9 16.2 Ga 

3.29 3.36 3.04 2.95 3.86 3.34 3.52 3.22 3.36 2.39 2.64 2.91 2.92 3.43 3.39 Gd 

1.5 1.5 1.4 1.5 1.5 1.4 1.9 1.6 1.4 1.1 1.2 1.1 1.3 1.5 1.8 Hf 

0.93 0.97 0.91 0.81 0.85 0.86 0.98 0.89 0.86 0.68 0.72 0.74 0.78 0.88 1 Ho 

2.5 2.9 2.7 2.4 3.4 2.6 3.3 2.6 2.6 2.1 2.4 2.3 2.6 2.6 2.8 La 

0.38 0.38 0.35 0.36 0.33 0.36 0.42 0.35 0.39 0.28 0.31 0.32 0.34 0.39 0.38 Lu 

1.1 1 1 1 1.1 1.1 1.2 1.2 1.1 0.8 0.8 0.9 1 1.1 1.3 Nb 

6.2 6.2 6.1 5.3 7 5.6 7.6 6.2 6.6 4.4 5 5.1 5.5 6.1 6.8 Nd 

1.13 1.15 1.06 0.95 1.26 1.01 1.42 1.14 1.13 0.82 0.92 0.88 0.91 1.17 1.16 Pr 

2.5 10.8 12.2 4.2 6.2 9.2 2.1 2.2 9.7 8.1 20.2 3.2 3.6 7.5 10 Rb 

2.19 2.12 2 1.95 2.32 2.17 2.28 2.18 2.13 1.62 1.64 2.06 1.76 2.49 2.52 Sm 

149 203 224 191 237 246 194 282 248 270 223 253 185 244 207 Sr 

0.1 0.2 0.1 0.1 0.2 0.2 0.7 0.3 0.2 0.2 0.1 0.1 0.2 0.2 0.2 Ta 

0.61 0.65 0.59 0.53 0.62 0.59 0.66 0.56 0.6 0.43 0.47 0.53 0.5 0.63 0.65 Tb 

0.32 0.33 0.34 0.23 0.26 0.25 0.32 0.39 0.29 0.2 0.28 0.28 0.32 0.27 0.32 Th 

0.4 0.43 0.39 0.35 0.36 0.35 0.41 0.36 0.4 0.33 0.34 0.3 0.34 0.41 0.44 Tm 

0.11 0.09 0.09 0.07 0.14 0.07 0.11 0.12 0.08 0.08 0.09 0.16 0.21 0.09 0.08 U 

302 333 331 298 321 324 382 309 317 268 281 287 315 339 353 V 

23.9 25 23.6 19.6 26.4 23.2 26.2 23.9 22.7 18 19.2 19.3 20.4 25.7 26.1 Y 

2.68 2.59 2.33 2 2.31 2.34 2.5 2.2 2.55 1.92 1.86 2.15 1.92 2.5 2.79 Yb 

56 55 51 43 54 50 64 54 52 40 44 43 45 53 58 Zr 

2.91 2.84 2.68 3.05 3.54 2.75 2.54 2.93 2.91 3.47 3.05 2.94 3.76 3.03 3.33 LOI 

99.11 
100.9
3 

98.95 98.58 98.19 
100.4
4 

100.15 99.63 100.61 99.06 99.02 99.22 98.7 99.82 100.08 Total 
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Figure 2. Simplified geological-mining map of Ghaleh–Rigi area showing the main rock units and mafic swarm dykes. 

 

 
Figure 3. Field photographs and petrographical showing morphology of the pillow lava outcrops and mineralogy with texture at 
Ghaleh-Rigi area (a) Micro gabbro sill shape. (b) Pillow lavas associated with ribbon chert. (c) Gabbroic texture of micro gabbro. (d) 
Micro porphyry texture in basaltic pillow lava. cpx: Pyroxene, Pl: Plagioclase, Chl: Chlorite, Om: Opaque mineral.  
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Microscope investigations of clinopyroxene 
indicated that some of the clinopyroxene 
phenocrysts show reverse zonings. Carlsbad 
twinning developed in augite phenocrysts. 
Pyroxenes have partially changed to tremolite-
actinolite and chlorite (Fig. 3d). Glomero-
porphyritic texture can be observed with pyroxene 
minerals in some samples (Fig. 3d). Plagioclase 
occurs in two generation in the form of either 
phenocrysts or microlith. Generally it is altered to 
clay minerals and sericite and is replaced by calcite, 
chlorite and epidote. Olivine crystals in some 
samples have coarse anhedral to subhedral shapes, 
rounded and with abundant fractures (Fig. 3d). 
 
Upper Pelagic Sediment Unit (UPSU) 
This unit consists of pelagic sediments such as 
mudstone‚ magniferous thin bedded, red to purple 
radiolarian chert‚ siltstone and shale. This unit is 
mainly composed of elegant layers. Typical features 
of this unit are regular, coarse-grained layering with 
more than 100 meters thickness. This unit is mainly 
composed of tuffaceous limestone, shales, siltstone 
with inter bedded layers of radiolarian ribbon chert. 
The unit structurally was affected by normal and 
trike strike-slip faults. Samples were taken from this 
unit for bio-chronology (Gr-95-278).  
 
Mafic Dyke Swarm Unit (MSDU) 
This magmatic stage was observed in the form of 
very long and mafic parallel dyke swarm with 
northwest to southeast trend. The mafic swarm dykes 
have intruded old units such as pelagic sediment and 
pillow and massive lava flows with fine grandchild 
margin. These dykes indicate subophitic, porphyry, 
intergranular and microgranular textures in different 
parts. The main minerals are plagioclase, hornblende, 
feldspar, quartz and clinopyroxene. Plagioclase (50-
55%) altered to chlorite, calcite, sericite and prehnite. 
The clinopyroxene minerals (augite-diopside) are 
subhedral to anhedral and altered into chlorite, 
tremolite and actinolite. Three samples were taken 
from this unit for petrography (Qr-95-2, Qr-95-3 and 
Gr-95-285) and chemical analysis (Qr-95-3 and Gr-
95-285). 
 
Gabbroic Intrusion Unit (GIU) 
In general, this magmatic phase has intruded the older 
unit and caused contact metamorphism in its wall 
rock. The chemical composition of this intrusion is 
olivine gabbro to gabbro and belongs to upper 
Miocene (GSI, 2011). Based on petrographic study, 

micro gabbro show different textures including micro 
granular, inter granular, porphyry and ophitic. These 
rocks mainly consist of plagioclase, clinopyroxene, 
olivine (rare) and opaque minerals, whereas chlorite, 
actinolite, epidote, apatite, zeolite, titanite, sphene and 
calcite occur as secondary minerals. Some altered 
dolerite dykes also outcropped. The plagioclases 
formed in two generation. The anhedral pyroxenes are 
diopside –augitic in composition and are altered to 
chlorite and epidote (Fig. 3).  
 
Biostratigraphy 
Radiolarian assemblages play an important role in 
the biostratigraphy in regions with high tectonic 
intensity (Babazadeh et al., 2004). Several samples 
were examined in this study and among them; only 
in three samples identifiable radiolarian species 
have been found. The age of faunal assemblage in 
the Ghaleh-Rigi area is Early Bajocian (Middle 
Jurassic) to Berriasian (Early Cretaceous) as 
inferred from the radiolarian in the radiolarian 
banded cherts, pelagic limestone and radiolarian 
argillaceous cherts (Figs. 4, 5 and Table 1). Based 
on the results presented here from age studies on 
radiolarian fossils, there must be a sedimentary 
basin in the Middle Jurassic to Early Cretaceous in 
this area. Since sedimentation was associated with 
volcanic and intrusive activities, simultaneous time 
span of radiolarians with volcanic activity can be 
observed in this basin (Table 2). 
 
Geochemistey 
Major elements 
According to geological and petrographic 
characteristics of igneous rocks in Ghaleh-Rigi, 15 
samples were selected for major and trace element 
geochemical analysis. Geochemical studies represent 
values of SiO2 45.5-49 wt.%, Al2O3 13.35-17.45 
wt.%, MgO 6.04-8.11 wt. %, FeO (T) 5.24-6.84 
wt.%, TiO2 0.79-1.19 wt.%, P2O5 0.05-0.11 wt. %, Zr 
40-54 ppm, Y 18.00-26.4 ppm, V 268-333 ppm and 
Cr 100-290 ppm (Table 3). Using the chemical 
classification diagram of LeBas et al., (1986) and 
Middlemost (1994) all samples plot in basalt or 
gabbro field (Fig. 6 a, b) and appear to be entirely 
subalkaline (Fig. 6c) and low-Ti basalts (Table 3; Fig. 
6d). 
 
Compatible and incompatible trace elements 
Trace element concentration of studied samples is 
presented in Table 3.  

 



252 Jahangiri et al.                                                         Geopersia, 10 (2), 2020 

 
Figure 4. Scale bar = 50 μm1-Sethocapsa orca, 2-Zhamoidellum ovum, 3-Sethocapsa uterculus, 4-Triactoma sp.,5-Betraccium sp., 6-
Saitoum levium,7-Obesacapsula magniglobosa, 8-Fultacapsa tricornis, 9-Homeoparanoella sp., 10-Paranaella sp.,11-Podobursa tricola, 
12-Emiluvia kuzuri, 13-Xiphostylus communis,14-Obesacapsula magniglobosa, 15-Saitoum levium, 16-Emiluvia ordinaria, 17-
Hiscocapsa funtoensis,18-Alievium,sp., 19-Archaeospongoprunum praeimlayi, 20-Archaeospongoprunum sp., 21-Williriedellum sp., 
22-Triactoma sp., 23-Emiluvia pessagnoi, 24-Antexitus yangi. 
 

 
Figure 5. Triactoma tithonianum?, 26-Fultacapsa tricornis, 27-Saitum levium, 29-Homoeparanaella sp.29-Hsuum parasolense, 30-
Crucella sanfilippoae, 31-35 Tricolocapsa sp., 36-Pseudodictyomitra sp.37- Squinabollum cf fossile, 38 -Obesacapsula sp. 39-
Squinabollum cf fossile, 40-Japanocapsa fusiformis, 41-Hiscocapsa sp.,42-Sethocapsa sp.,43-Archaeodictyomitra sp.,44-
Zhamoidellum yehae. Scale bar = 50 μm. 
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Figure 6. (a) Chemical classification of the basaltic rocks on Na2O+K2O/SiO2 diagram (LeBas et al., 1986). (b) Chemical classification 
of the gabbro samples on Na2O+K2O/SiO2 diagram (Middlemost, 1994). (c) Most of samples show IAT environment on triangle 
diagram of 10MnO-TiO2-10P2O5 (Mullen, 1983). (d) All samples plot in low-Ti field on TiO2 versus MgO diagram. 
 

All samples display low Nb/Y values (0.04-
0.05). Chondrite and primitive mantle normalized 
diagrams of trace elements abundances (Fig. 7) 
show enrichment of large-ion-lithophile elements 
(LILEs) with respect to the high field strength 
elements (HFSE), including Zr, Nb and Ti. 
Concentration of REE elements display near-flat 
pattern for the light rare earth elements (LREE) 
with respect to heavy rare earth elements (HREE). 

These samples, besides the marked depletion in 
Th and Nb compared to other HFSE (e.g., Ti, P, Zr, 
and Y) Show similar geochemical features with 
Mid Ocean Ridge Basalt (MORB) and Island Arc 
Tholeite (IAT). As shown in Fig. 8, in the La/Nb 
and Ba/La ratios versus La diagrams, these samples 
all plot in the IAT field (Fig. 8). 
 
Dicussion 
Source features and variations 
Gabbro and basaltic rocks display low TiO2 (0.79-

1.19 wt. %) (Fig. 6), with 0.8-1.2 ppm Nb and 40-
64 ppm Zr concentration, suggesting similar mantle 
source and/or the same degrees of partial melting 
for their generation. Based on the Nb/Yb versus 
Th/Yb diagram the source region must be depleted 
and plot in the oceanic arc basalt field (Fig. 9a). 
Y/Nb values of the samples are also high (19.60-25) 
displaying similarities to depleted source (Pearce, 
2008) (Fig. 9b). 

REE ratios are sensitive to changes based on the 
presence of spinel or garnet in the mantle source.  

The range of La/Sm versus Sm/Yb and La/Yb 
versus Dy/Yb based on non-modal batch melting of 
spinel garnet–lherzolite source of 50% PM and 50% 
MORB source composition (Göncüoglu et al., 
2010) show they may have formed by partial 
melting (around 10 percent) of a mixed spinel–
garnet-bearing source (Fig. 10). This interpretation 
is based on a non-modal batch melting (Shaw, 
1970) with distribution coefficients compiled from 
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McKenzie and O'Nions (1991), Kelemen et al. 
(1993), Bedard (1994) and Johnson (1998). 
Concentrations of depleted and primitive mantle 
were taken from McKenzie and O'Nions (1991). 
The samples show LILE enrichment, variable 
depletion in Th followed by depleted HFSE 

concentrations and distinct negative Nb anomalies 
(Th/Nb=0.23-035) (Fig. 7) which is a typical 
feature characterizing magmas related to subduction 
zones (Pearce, 1983; Peate et al., 1997; Gribble et 
al., 1998). 

 

 
Figure 7. Trace element and REE variations of the Ghaleh-Rigi basalts and gabbros comparing with OIB, N-MORB and basaltic 
samples from Makran (Saadat & Stern, 2011). Normalization values from Sun and McDonough (1989).  
 

 
Figure 8. La/Nb and Ba/La ratios versus La concentration. The borderline of the field of OIB and MORB from Hickey-vargas et al. 
(1989). 

 
Figure 9. (a) Th/Yb versus Nb/Yb (Pearce, 2008). N-MORB and OIB compositions are from Sun and McDonough (1989).  
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Figure 10. Variation of La/Sm–Sm/Yb and La/Yb–Dy/Yb for the Ghaleh-Rigi N-MORB-type Basalts and gabbros Melting paths based 
on non-modal batch melting of spinel garnet–lherzolite source of 50% PM and 50% MORB source composition. Garnet–lherzolite has 
a modal mineralogy of 0.60 oli + 0.20% opx + 0.14 cpx + 0.06 garnet melts in the proportions of 0.01 oli + 0.04 opx + 0.55 cpx + 0.40 
grt (Haase et al., 1997). Spinel–garnet–lherzolite: 0.55 oli + 0.25 opx + 0.15 cpx + 0.014 grt, 0.03 spi that melts in the proportions of 
0.05 oli + 0.05 opx + 0.30 cpx + 0.28 grt + 0.32 sp. 

 
These chemical characteristics may have been 

inherited from Mesozoic subduction associated with 
the collision of the Arabian with the Eurasian plate. 

These rocks are characterized by LREE-depleted 
patterns as indicated by low (Ce/Yb)N values (0.62–
-0.85). According to Göncüoglu et al., (2010), these 
ratios resemble an N-MORB-like source. In 
addition, ratio of Y/Nb against Zr/Nb and Ce/Y 
against Zr/Nb also indicate all samples plot in N-
MORB field (Fig. 11).  

In general basaltic rocks rise fast and therefore 
they have usually minimum crustal contamination. 
Basalts that have experienced minimal or no crustal 
contamination characterize by low TiO2/Yb ratios 
(Taylor & McLennan, 1995). Samples of the 
present study show low TiO2/Yb ratio (0.37 to 
0.48), low La/Nb (2.16-3) and La/Ta (4-24) 
indicating minimum crustal contamination (Hart et 
al., 1989; Saunders et al., 1992).  
 
Tectono-magmatic evaluation  
Any model of the tectonic setting and evolution of 
studied area must consider fundamental geochemical 
characteristics of their sequences, with specific 
regard to: (1) the geochemistry of the igneous rocks, 
(2) the nature and partial melting conditions of the 
mantle sources, and (3) the mutual relationships in 
terms of stratigraphy, tectonics and age of the 
different ophiolitic units. The petrological evidence 
with biostratigraphic data resulted in cognition of 
magmatic evolution of the Ghaleh-Rigi area. 

All samples have tholeiitic basalts composition 
and small variation of TiO2 and Nb contents and 
REE distribution reflect a uniform origin for their 
generation (Fig. 7). Indeed, the geochemical data 
presented in this study plot between volcanic arc and 
IAT fields in Ti/Zr discrimination diagram (Pearce & 

cann, 1973). They also fall mainly between volcanic 
arc and N-MORB fields in Triangular Y/15, La/10, 
Nb/8 diagram of Cabanis and Lecolle (1989). These 
geochemical characteristics indicate transitional 
environment between MORB and IAT (Saccani, 
2018), indicating that they may have been generated 
in a back-arc basin (extensional regime) rather than 
in an island-arc setting (e.g. Volpe et al., 1990; 
Pearce et al., 1995; Gribble et al., 1998) (Fig. 12). 

As pointed by Ghazi et al. (2011) for Nain–Baft 
ophiolitic belt petrological events, the following 
tectonic evolution can be suggested for Ghaleh-Rigi 
area: 
(i) Based on bio-chronological investigation, the age 
of radiolarian faunal assemblage in the Ghaleh-Rigi 
area is Early Bajocian (Middle Jurassic) to Berriasian 
(Early Cretaceous). Radiolarian banded cherts and 
pelagic sediments associated with pillow and massive 
lava flows indicate sub marine volcanic activity in 
deep portion of oceanic basin during mid-Jurassic 
and Early Cretaceous in Ghaleh-Rigi area. (ii) 
Geochemical characteristic presented in this research 
shows a subduction signature followed by the release 
of slab-derived fluids/melts, which increased partial 
melting of the mantle wedge source. (iii) A slab roll-
back occurred and resulted in intense mantle 
diapirism and generated moderate to low-Ti IAT 
magmas. (iv) Contemporaneous uprising of primitive 
asthenospheric mantle induced by continuous slab 
roll-back and generation of MORB sequences 
interlayered with MORB/IAT rocks (Fig. 13). The 
evolution of back arc mantle in the Ghaleh-Rigi area 
is similar to Nain Baft in Iran and evolution of the 
Northern Mariana back arc basin (Gribble et al., 
1998) and Albanide–Hellenide ophiolites (Saccani et 
al., 2008). 
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Figure 11. (a) Variation of Y/Nb against Zr/Nb for the studied samples. N-MORB and OIB compositions are from Sun and 
McDonough (1989); (b) Variation of Ce/Y against Zr/Nb for the studied samples. N-MORB and OIB compositions are from Sun and 
McDonough (1989). 
 

 

 
Figure 12. (a) Ti/Zr discrimination diagram (Pearce & cann, 1973). Samples of studied area plot between volcanic arc and IAT fields 
(b) Triangular Y/15, La/10, Nb/8 diagram of Cabanis and Lecolle (1989). Samples of studied area plot mainly between volcanic arc 
and N-MORB fields. (c) Samples plot in back arc setting in discrimination diagram of Saccani (2018). 
 

 
Figure 13. Sketch geodynamic model proposed for the oceanic domain between the margin of Sanandaj-Sirjan Arc (SSA) and the 
Margin of Central Iran Micro-continent (CIM) from Early Middle Jurassic to early Cretaceous times, from supra subduction zone 
(SSZ) to Back arc Spreading (Modified and after Hassig et al., 2015). 
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Summary and conclusions 
This study focused on volcano-sedimentary series 
including oceanic lavas associated with pelagic 
sediments within the Ghaleh-Rigi area (between 
Nain –Baft and Makran ophiolitic belt), south west 
of Jiroft, south of Kerman province, southeast of 
Iran. Major and trace element analyses of mafic 
igneous rocks and a tailed bio-chronological 
investigation of the associated radiolarites 
(Radiolarian assemblages) from the Ghaleh-Rigi 
area led to the following conclusions. 

The radiolarian cherts associated with volcanic 
rocks show the following ages: Early Bajocian to 
Berriasian (MPSU, gr-95-274), Collovian-
Valanginian (UPMLFU, gr-95-276), Oxfordian-
Valanginian (UPSU, gr-95-278).  

Pillow and lava flows are mainly basalts in 
composition. In addition, minor andesite as well as 
micro gabbro are outcropped in this area. They 
show similar tholeiitic affinities and ages based on 
stratigraphic data (Early Middle Jurassic to Early 
Cretaceous).  

The studied samples display mainly consistent 
multi-element patterns for HFSE and REE, 
indicating that the observed variations reflect 
primary igneous processes (Fig. 7). All rock types 
show depletion in Th and negative Nb anomalies. 

These rocks show transitional geochemical 
characteristics between MORB and IAT 
environment, indicating they may have been 
generated in a back-arc basin. These chemical 
characteristics may have been inherited from 
Mesozoic subduction associated with the collision 
of the Arabian with the Eurasian plate. 

Based on partial melts of REE ratios, Ghaleh-
Rigi basalts and gabbros show more than 10% 
partial melting of a mixed spinel–garnet-bearing 
source, which is composed of 50% PM and 50% 
MORB source. 
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