Ali, S. M., Malik, R. N., 2011. Spatial distribution of metals in top soils of Islamabad City, Pakistan. Environmental monitoring and assessment, 172 (1–4): 1–16.##
Amini, M., Afyuni, M., Fathianpour, N., Khademi, H., Flühler, H., 2005. Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma, 124 (3): 223–233.##
Anttila, P., Paatero, P., Tapper, U., Järvinen, O., 1995. Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmospheric Environment, 29 (14): 1705–1718.##
Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., Suzuki, S., 2010. Heavy metal pollution of coal mine–affected agricultural soils in the northern part of Bangladesh. Journal of hazardous materials, 173 (1): 384–392.##
Chapman, H.D., 1965. Cation–exchange capacity 1. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methods of soil and), pp.891–901##
Chen, H., Teng, Y., Wang, J., Song, L., Zuo, R., 2013. Source apportionment of trace element pollution in surface sediments using positive matrix factorization combined support vector machines: application to the Jinjiang River, China. Biological trace element research, 151 (3): 462–470.##
Comero, S., 2011, Source identification of environmental pollutants using chemical analysis and Positive Matrix Factorization. PhD Thesis.##
Comero, S., Servida, D., De Capitani, L., Gawlik, B. M., 2012. Geochemical characterization of an abandoned mine site: a combined positive matrix factorization and GIS approach compared with principal component analysis. Journal of Geochemical Exploration, 118: 30–37.##
Conyers, M.K. Davey, B.G., 1988. Observations on some routine methods for soil pH determination. Soil Science, 145 (1): 29–36.##
Davis, H. T., Aelion, C. M., McDermott, S., Lawson, A. B., 2009. Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS–based data, PCA, and spatial interpolation. Environmental Pollution, 157(8):2378–2385.##
Davies, B.E., 1974. Loss–on–ignition as an estimate of soil organic matter 1. Soil Science Society of America Journal, 38 (1): 150–151.##
Norris, G. A., Duvall, R., Brown, S. G., Bai, S., 2014. EPA Positive Matrix Factorization (PMF) 5.0 fundamentals and User Guide Prepared for the US Environmental Protection Agency Office of Research and Development, Washington,DC. DC EPA/600/R–14/108.##
Facchinelli, A., Sacchi, E., Mallen, L., 2001. Multivariate statistical and GIS–based approach to identify heavy metal sources in soils. Environmental pollution, 114 (3): 313–324.##
Farnham, I. M., Singh, A. K., Stetzenbach, K. J., & Johannesson, K. H., 2002. Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometrics and Intelligent Laboratory Systems, 60 (1): 265–281.##
González–Macías, C., Sánchez–Reyna, G., Salazar–Coria, L., Schifter, I., 2014. Application of the positive matrix factorization approach to identify heavy metal sources in sediments. A case study on the Mexican Pacific Coast. Environmental monitoring and assessment, 186(1): 307–324.##
Guan, Q., Wang, F., Xu, C., Pan, N., Lin, J., Zhao, R., Luo, H., 2018. Source apportionment of heavy metals in
agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere, 193: 189–197.##
Hulseman, J., 1966. An inventory of marine carbonate materials. Journal of Sedimentary Petrology ASCE, 36 (2): 622–625.##
Hao, L., Tian, M., Zhao, X., Zhao, Y., Lu, J., Bai, R., 2016. Spatial distribution and sources of trace elements in surface soils, Changchun, China: Insights from stochastic models and geostatistical analyses. Geoderma, 273: 54–63.##
Harris, P., Brunsdon, C., & Charlton, M., 2011. Geographically weighted principal components analysis. International Journal of Geographical Information Science, 25 (10): 1717–1736.##
Huang, S., Conte, M. H., 2009. Source/process apportionment of major and trace elements in sinking particles in the Sargasso Sea. Geochimica et Cosmochimica Acta, 73 (1): 65–90.##
Huang, Y., Li, T., Wu, C., He, Z., Japenga, J., Deng, M., Yang, X., 2015. An integrated approach to assess heavy metal source apportionment in peri–urban agricultural soils. Journal of hazardous materials, 299: 540–549.##
Hussain, R., Khattak, S. A., Shah, M. T., Ali, L., 2015. Multistatistical approaches for environmental geochemical assessment of pollutants in soils of Gadoon Amazai Industrial Estate, Pakistan. Journal of Soils and Sediments, 15(5):1119–1129.##
Khamehchiyan, M., Nikoudel, M.R. Boroumandi, M., 2011. Identification of hazardous waste landfill site: a case study from Zanjan province, Iran. Environmental earth sciences, 64 (7): 1763–1776.##
Kim, E., Hopke, P. K., 2005. Identification of fine particle sources in mid–Atlantic US area. Water, Air, and Soil
Pollution, 168 (1–4): 391–421. Evaluation of soil pollution sources using multivariate analysis combined with geostatistical … 303##
Kim, E., Hopke, P. K., Edgerton, E. S., 2003. Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air & Waste Management Association, 53 (6):731–739.##
Kim, E., Hopke, P. K., Edgerton, E. S., 2004. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment, 38(20): 3349–3362.##
Krieger, R. (Ed.)., 2001. Handbook of Pesticide Toxicology, Two–Volume Set: Principles and Agents (Vol. 1).
Academic Press.##
Li, J., He, M., Han, W., Gu, Y., 2009. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. Journal of Hazardous Materials, 164 (2): 976–981.##
Liang, J., Zhong, M., Zeng, G., Chen, G., Hua, S., Li, X., Yuan, Y., Wu, H., Gao, X., 2016. Risk management for optimal land use planning integrating ecosystem services values: a case study in Changsha, Middle China. Sci. Total Environ. 579:1675–1682##
Liang, J., Feng, C., Zeng, G., Gao, X., Zhong, M., Li, X., Fang, Y., 2017a. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environmental Pollution, 225: 681–690.##
Liang, J., Feng, C., Zeng, G., Zhong, M., Gao, X., Li, X., He, X., Li, X., Fang, Y. and Mo, D., 2017b. Atmospheric deposition of mercury and cadmium impacts on topsoil in a typical coal mine city, Lianyuan, China. Chemosphere,189: 198–205##
Liang, J., Zhong, M., Zeng, G., Chen, G., Hua, S., Li, X., Yuan, Y., Wu, H. Gao, X., 2017c. Risk management for optimal land use planning integrating ecosystem services values: A case study in Changsha, Middle China. Science of the Total Environment, 579: 1675–1682##
Liu, D., Li, Y., Ma, J., Li, C., Chen, X., 2016. Heavy metal pollution in urban soil from 1994 to 2012 in Kaifeng City, China. Water, Air, & Soil Pollution, 227 (5): 154.##
Lin, Y. P., Cheng, B. Y., Chu, H. J., Chang, T. K., Yu, H. L., 2011. Assessing how heavy metal pollution and human activity are related by using logistic regression and kriging methods. Geoderma, 163(3): 275–282.##
Mitchell, K. N., Gómez, M. S. R., Barrera, A. L. G., Flores, L. Y., de la Torre, J. A. F., González, F. J. A., 2016.
Evaluation of Environmental Risk of Metal Contaminated Soils and Sediments Near Mining Sites in Auascalientes,Mexico. Bulletin of environmental contamination and toxicology, 97 (2): 216–224.##
Olubunmi, F. E., & Olorunsola, O. E., 2010. Evaluation of the status of heavy metal pollution of sediment of Agbabu bitumen deposit area, Nigeria. European Journal of Scientific Research, 41 (3): 373–382.##
Paatero, P., 1997. Least squares formulation of robust non–negative factor analysis. Chemometrics and intelligent laboratory systems, 37(1): 23–35.##
Paatero P, Hopke PK, Song X–H, Ramadan Z., 2002. Understanding and controlling rotations in factor analytic models. Chemometrics and Intelligent Laboratory Systems, 60: 253–264##
Paatero, P., & Tapper, U., 1994. Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5 (2): 111–126##
Pekey, H., Pekey, B., Arslanbaş, D., Bozkurt, Z. B., Doğan, G., Tuncel, G., 2013. Source apportionment of personal exposure to fine particulate matter and volatile organic compounds using positive matrix factorization. Water, Air, & Soil Pollution, 224(1): 1–11.##
Polissar, A. V., Hopke, P. K., Paatero, P., Malm, W. C., Sisler, J. F., 1998. Atmospheric aerosol over Alaska: 2.
Elemental composition and sources. Journal of Geophysical Research: Atmospheres, 103(D15): 19045–19057.##
Polissar, A. V., Hopke, P. K., Poirot, R. L., 2001. Atmospheric aerosol over Vermont: chemical composition and sources. Environmental science & technology, 35(23): 4604–4621.##
Reimann, C., Arnoldussen, A., Englmaier, P., Filzmoser, P., Finne, T. E., Garrett, R. G., Nordgulen, Ø., 2007. Element concentrations and variations along a 120–km transect in southern Norway–Anthropogenic vs. geogenic vs. biogenic element sources and cycles. Applied Geochemistry, 22(4): 851–871.##
Rhoades, J.D., 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis Part 3— Chemical Methods, (methodsofsoilan 3): 417–435.##
Sharma, S. K., Mandal, T. K., Jain, S., Sharma, A., Saxena, M., 2016. Source Apportionment of PM2. 5 in Delhi, India Using PMF Model. Bulletin of environmental contamination and toxicology, 97 (2): 286–293.##
Sofowote, U. M., McCarry, B. E., Marvin, C. H., 2008. Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods. Environmental Science & Technology, 42(16): 6007–6014.##
Stocklin, J. & Eftekharnezhad, J., 1969. Zanjan Quadrangle map, with explanatory text. Geol. Survey. Iran, scale 1:250,000.##
Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72(2): 175–192.##
Udayakumar, P., Jose, J. J., Krishnan, K. A., Kumar, C. R., Manju, M. N., Salas, P. M., 2014. Heavy metal accumulation in the surficial sediments along southwest coast of India. Environmental Earth Sciences, 72 (6): 1887–1900.##
Vaccaro, S., Sobiecka, E., Contini, S., Locoro, G., Free, G., Gawlik, B. M., 2007. The application of positive matrix 304 Boroumandi et al. Geopersia, 9 (2), 2019##
factorization in the analysis, characterisation and detection of contaminated soils. Chemosphere, 69 (7): 1055–1063.##
Wang, D., Tian, F., Yang, M., Liu, C., Li, Y. F., 2009. Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China. Environmental Pollution, 157 (5): 1559–1564.##
Wang, Q., Xie, Z., Li, F., 2015. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale. Environmental Pollution, 206: 227–235.##
Zhang, C., Li, Z., Yang, W., Pan, L., Gu, M., Lee, D., 2013. Assessment of metals pollution on agricultural soil
surrounding a lead–zinc mining area in the Karst region of Guangxi, China. Bulletin of environmental contamination and toxicology, 90(6): 736–741.##
Zhang, C., Wu, L., Luo, Y., Zhang, H., Christie, P., 2008. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: role of pollutant migration and soil physicochemical properties.Environmental Pollution, 151 (3): 470–476.##
Zhang, Z., Juying, L., Mamat, Z., 2016. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicology and environmental safety, 126: 94–101.##
Zhao, Y., Wang, Z., Sun, W., Huang, B., Shi, X., Ji, J., 2010. Spatial interrelations and multi–scale sources of soil heavy metal variability in a typical urban–rural transition area in Yangtze River Delta region of China. Geoderma, 156 (3–4): 216–227.##