Using stream sediment data to determine geochemical anomalies by statistical analysis and fractal modeling in Tafrash Region, Central Iran

Document Type : Research Paper


1 Department of Mining Engineering,Arak University of Technology

2 PhD student Candidate, Amirkabir University of Technology, Department of Mining and Metallurgical Engineering, Tehran, Iran

3 Department of Mining Engineering, Arak University of Technology, Arak,


Iranian Cenozoic magmatic belt, known as Urumieh-Dokhtar, is recognized as an important polymetallic mineralization which hosts porphyry, epithermal, and polymetallic skarn deposits. In this regard, multivariate analyses are generally used to extract significant anomalous geochemical signature of the mineral deposits. In this study, stepwise factor analysis, cluster analysis, and concentration–area fractal model have been used to delineate geochemical anomalies associated with skarn mineralization, based on Au, Cu, Pb, Zn, Ag, Mo, W, Sn, and As stream sediment data. These results indicate that the Urumieh-Dokhtar belt potentially hosts Au skarn deposits. The hybrid method combining the statistical analysis and C-A fractal model is an effective tool to identify geochemical anomalies


Article Title [Persian]

استفاده از رسوبات آبراهه ای برای تعیین آنومالی های ژئوشیمیایی بوسیله تحلیل آماری و هندسه فراکتال در منطقه تفرش از ایران مرکزی

Authors [Persian]

  • فریدون قدیمیi 1
  • محمد قمی 2
  • احسان ملکی 3
1 دانشیار گرو مهندسی معدن دانشگاه صنعتی اراک
2 دانشجوی دکترای دانشگاه صنعتی امیرکبیر مربی آموزشی دانشکده مهندسی معدن دانشگاه صنعتی اراک
3 دانش آموخته کارشناسی ارش دانشگاه صنعتی اراک
Abstract [Persian]

زون ماگمایی ارومیه دختر در ایران به عنوان یک کمربند چند فلزی شناخته شده است که دارای سنگ میزبان کانسارهای پورفیری، کانسار اسکارن چند فلزی است.در این تحقیق تحلیل آماری چند متغیره برای شناسایی آنومالی های ژئوشیمیایی مورد توجه است.تحلیل های آنالیز فاکتوری مرحله به مرحله ، آنالیز خوشه ای و مدل فراکتال برای شناسایی آنومالی های عناصری چون طلا،مس، سرب، روی، نقره، مولیبدن، تنگستن، قلع و آرسنیک برای کانسارهای اسکارنی مورد تجزیه و تحلیل قرار گرفت و مشخص شد که کمربند ارومیه -دختر میزبان طلا در این منطقه است. به علاوه مشخص شد که تلفیق روش های آماری و مدل فراکتال ابزار های مناسب برای شناسایی آنومالی های ژئوشیمیایی هستند.

Keywords [Persian]

  • رسوب آبراهه ای
  • تحلیل آماری
  • مدل غلظت -مساحت فراکتال
  • کانسار اسکارن طلا
  • ایران
Afzal, P., Khakzad, A., Moarefvand, P., Rashidnejad, N.O., Esfandiari, B., FadakarAlghalandis, Y., 2010. Geochemical anomaly separation by multifractal modeling inKahang (GorGor) porphyry system, Central Iran .Journal of Geochemical Exploration 104, 34–46.
Afzal, P., FadakarAlghalandis, Y., Khakzad, A., Moarefvand, P., RashidnejadOmran, N., 2011. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling, Journal of Geochemical Exploration 108, 220–232.
Afzal, P., Harati, H., FadakarAlghalandis, Y., Yasrebi, A.B., 2013. Application of spectrum–area fractal model to identify of geochemical anomalies based on soil data in Kahang porphyry-type Cu deposit, Iran, Chemie der Erde - Geochemistry, Volume 73, Issue 4, December 2013, 533-543.
Afzal, P., Alhoseini, S.H., Tokhmechi, B., KavehAhangarana, D., Yasrebi, A.B., Madani, N., ,Wetherelt, A., 2014. Outlining of high quality coking coal by Concentration-Volume fractal Model and Turning Bands Simulation in East-Parvadeh Coal Deposit, Central Iran. International Journal of Coal Geology 127: 88-99.
Aitchison, J., 1986. The statistical analysis of compositional data. London, UK: Chapman and Hall; p. 416.
Alavi, M., 1994. Tectonic of Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–238.
Arias, M., Gumiel, P., Marti-Izard, C., 2012. Multifractal analysis of geochemical anomalies: a tool for assessing prospectivity at the SE border of the Ossa Morena Zone, Variscan Massif (Spain). Journal of Geochemical Exploration 122, 101–112.
Borna, B., 2004. Exploration studies of Au in TafrashZaghar, Geological Organization of Iran.
Carranza E.J.M. 2009. Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis. 10: 171–187.
Carranza, E.J.M., 2010. Catchment basin modeling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis. Geochemistry: Exploration, Environment, Analysis. 10: 365–381.
Carranza, E.J.M., 2011. Analysis and mapping of geochemical anomalies using logratiotransformed stream sediment data with censored values. Journal of Geochemical Exploration. 110: 167–185.
Cheng, Q., Agterberg, F.P., Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration. 54: 109–130.
Cheng, Q., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews. 32: 314–324.
Cheng, Q., Agterberg, F.P., 2009. Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers and Geosciences. 35: 234–244.
Cheng, Q., Xia, Q., Li, W., Zhang, S., Chen, Z., Zuo, R., Wang, W., 2010. Density/area power–law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China. Biogeosciences. 7: 3019–3025.
Cheng, Q., Bonham-Carter, G.F., Wang, W., Zhang, S., Li, W., Xia, Q., 2011. A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Computers and Geosciences. 5: 662–669.
Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barceló-Vidal, C., 2003. Isometric logratio transformations for compositional data analysis. Mathematical Geology. 35: 279- 300.
Geranian, H., Mokhtari, A.R., Cohen,D.R., 2013. A comparison of fractal methods and probability plots in identifying and mapping soil metal contamination near an active mining area, Iran, Science of the Total Environment, 463-464.
Grunsky E.C., Drew, L.J., and Sutphin, D.M., 2009. Process recognition in multi-element soil and stream-sediment geochemical data. Applied Geochemistry 24, 1602–1616.
Grunsky, E.C., 2010. The interpretation of geochemical survey data. Geochemistry: Exploration, Environment, Analysis. 10: 27–74.
Hajian, J., 1999. Geological map of Tafrash, Geological Organization of Iran.
Heidari, M., Ghaderi, M., Afzal, P., 2013. Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal Au-Ag (Cu) deposit, NW Iran. Applied Geochemistry. 31: 119-132.
Jolliffe, T., 2002. Principal Component Analysis. Springer Verlag, New York.
Johnson, R.A.,Wichern, D.W., 2002. Applied Multivariate Statistical Analysis, 5th ed. Prentice Hall, Upper Saddle River, New Jersey.
Kaiser, H.F., 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika. 23: 187-200.
Lahermo, P., Väänänen, P., Tavainen, T., Salminen, R., 1996. Geochemical Atlas of Finland: Part 3. Environmental Geochemistry– Stream Waters and Sediments. Geological Survey of Finland, Espoo.
Reimann, C., Filzmoser, P., 2000. Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology. 39: 1001–1014.
Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K. (eds-in-chief), Treatise on Geochemistry Volume 3: Rudnick, R.L. (ed.), The Crust, 1–64. Elsevier-Pergamon, Oxford.
Salminen, R., Tarvainen, T., Demetriades, A., Duris, M., Fordyce, F. M., Gregorauskiene,V., Kahelin, H., Kivisilla, J., Klaver, G., Klein, H., Larson, J.O., Lis, J., Locutura, J., Marsina,K., Mjartanova, H., Mouvet, C., O'Connor, P., Odor L., Ottonello, G., Paukola, T., Plant ,J.A., Reimann, C., Schermann, O., Siewers, U., Steenfelt, A., Van der Sluys, J., De Vivo, B., Williams, L., 1998. FOREGS geochemical mapping field manual. Geological Survey of Finland, p. 47.
Shahabpour, J., 1994. Post-mineral breccia dyke from the Sar-Cheshmeh porphyry copper deposit, Kerman, Iran. Exploration and Mining Geology. 3: 39- 43.
Soltani, F., Afzal, P., Asghari,O., 2014. Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene zone of Sungun copper deposit, NW Iran, Journal of Geochemical Exploration.140: 64-76.
Spadoni, M., Voltaggio, M., Cavarretta, G., 2005. Recognition of areas of anomalous concentration of potentially hazardous elements by means of a subcatchment-based discriminant analysis of stream sediments. Journal of Geochemical Exploration. 87: 83–91.
Spadoni, M., 2006. Geochemical mapping using a geomorphologic approach based on catchments, Journal of Geochemical Exploration. 90: 183–196.
Sun, X., Deng, J., Gong, Q., Wang, Q., Yang, L., Zhao, Z., 2009.Kohonen neural network and factor analysis based approach to geochemical data pattern recognition. Journal of Geochemical Exploration. 103: 6–16.
Yousefi, M., Nykänen,V., 2015. Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping, Journal of Geochemical Exploration,doi:10.1016/J.gexplo010.008.
Yousefi, M., Carranza, E.J.M., 2015. Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling, Computers & Geosciences.79: 69–81.
Yousefi, M., Carranza, E.J.M., 2014. Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computer and Geoscience. 74: 97-109.
Yousefi, M., Kamkar- Rouhani, A., Carranza, E.J.M., 2014. Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping, Geochemistry: Exploration, Environment, Analysis. 14 (1): 45-58.
Yousefi, M., Carranza, E.J.M., Kamkar-Rouhani, A., 2013. Weighted drainage catchment basin mapping of geochemical anomalies using stream sediment data for mineral potential modeling. Journal of Geochemical Exploration. 128: 88-96.
Yousefi, M., Kamkar-Rouhani, A., Carranza, E.J.M, 2012. Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration. 115: 24–35.
Zheng, Y., Sun, X., Gao, S., Wang, C., Zhao, Z., Song., 2014. Analysis of stream sediment data for exploring the Zhunuo porphyry Cu deposit, southern Tibet, Journal of Geochemical Exploration. Available online 1 March 2014.
Zuo, R., Cheng, Q., Agterberg, F.P., 2009a. Application of a hybrid method combining multilevel fuzzy comprehensive evaluation with asymmetric fuzzy relation analysis to mapping prospectivity. Ore Geology Reviews. 35: 101–108.
Zuo, R., Cheng, Q., Agterberg, F.P., Xia, Q. 2009b. Application of singularity mapping technique to identification local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, Western China. Journal of Geochemical Exploration. 101: 225–235.
Zuo, R., Xia, Q., 2009. Application fractal and multifractal methods to mapping prospectivity for metamorphosed sedimentary iron deposits using stream sediment geochemical data in eastern Hebei province, China. GeochimicaetCosmochimicaActa. 73: A1540-A1540.
Zuo, R., 2011a. Decomposing of mixed pattern of arsenic using fractal model in Gangdese Belt, Tibet, China. Applied Geochemistry. 26: S271–S273.
Zuo, R., Xia, Q., 2009. Application fractal and multifractal methods to mapping prospectivity for metamorphosed sedimentary iron deposits using stream sediment geochemical data in eastern Hebei province, China. GeochimicaetCosmochimicaActa. 73 A1540-A1540.
Zuo,R., 2011. Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gandese Belt, Tibet (China). J Geochem Explor. 111: 13–22.
Zuo, R., 2014. Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas,Journal of Geochemical Exploration,Volume 136, January. 2014: 93–101.