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Abstract 
Iranian Cenozoic magmatic belt, known as Urumieh-Dokhtar, is recognized as an important polymetallic mineralization which hosts 
porphyry, epithermal, and polymetallic skarn deposits. In this regard, multivariate analyses are generally used to extract significant 
anomalous geochemical signature of the mineral deposits. In this study, stepwise factor analysis, cluster analysis, and concentration–
area fractal model have been used to delineate geochemical anomalies associated with skarn mineralization, based on Au, Cu, Pb, Zn, 
Ag, Mo, W, Sn, and As stream sediment data. These results indicate that the Urumieh-Dokhtar belt potentially hosts Au skarn deposits. 
The hybrid method combining the statistical analysis and C-A fractal model is an effective tool to identify geochemical anomalies. 
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Introduction 
Iranian Cenozoic magmatic belt, known as 
Urumieh-Dokhtar belt, is an interesting area for 
porphyry and related types of mineral resources. 
This belt is becoming a world-class Cu polymetallic 
province. Porphyry type, skarn, hydrothermal veins, 
hot spring type, and magmatic deposits of Cu, Pb, 
Zn, Au, and other metallic and non-metallic 
elements widely occur in this belt (Shahabpour, 
1994). The porphyry-type deposits are one of the 
most important deposits in the Urumieh-Dokhtar 
belt. Skarn deposits, another important type in this 
belt, are exemplified by Pb, Ag, Sn deposits. 
Integration of stream sediment, geochemical data 
with other types of mineral exploration data is a 
challenging issue that needs careful analysis of 
multi-element geochemical anomalies. Analysis of 
stream sediment samples can reveal various 
geochemical anomalies, some of which can be 
considered as surficial geochemical signature of 
some type of mineralization (Zheng et al., 2014). 

Univariate data analyses such as histogram, box 
plots, density plot, and Q–Q plot, multivariate data 
analysis (e.g., factor analysis, cluster analysis), and 
fractal and multifractal models using Geographic 
Information System (GIS) techniques have been 
successfully applied to analyze geochemical data 
(Zuo et al., 2009a, 2009b; Carranza, 2009, 2010; 
Grunsky, 2010; Cheng et al., 2011; Arias et al., 
2012; Zuo, 2014; Yousefi and Nykänen, 2015). 
Multivariate analyses are especially useful for that 

purpose because the relative importance of the 
combinations of geochemical variables can be 
evaluated. There are many studies that have used 
multivariate methods for analysis of geochemical 
exploration data (Grunsky et al., 2009). 

Factor analysis, as one of the methods of 
multivariate analysis, has been widely used for 
interpretation of stream sediment geochemical data 
(Sun et al., 2009; Yousefi et al., 2012, 2013). The 
principal aim of factor analysis is to explain the 
variations in a multivariate data set by as few 
factors as possible and to detect hidden multivariate 
data structures (Johnson and Wichern, 2002). Thus, 
factor analysis is suitable for analysis of the 
variability inherent in a geochemical data set with 
many analyzed elements. Consequently, the factor 
analysis is often applied as a tool for exploratory 
data analysis. Univariate/ multivariate data analyses 
based on the frequency distributions or correlations 
of geochemical data may be effective for solving 
some problems in the frequency domain but are of 
limited use in the spatial domain due to spatial 
autocorrelation inherent in geochemical data. 

The fractal/ multifractal models (Cheng et al., 
1994; Afzal et al., 2011, 2013, 2014; Heidari et al., 
2013; Geranian et al., 2013; Yousefi & Carranza, 
2015) involve both the frequency distributions and 
the spatial self-similar properties of geochemical 
variables, and have been demonstrated to be 
effective tools for decomposing complex and mixed 
geochemical populations and to identify weak 
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geochemical anomalies hidden within strong 
geochemical background (Cheng, 2007; Zuo and 
Xia, 2009; Cheng and Agterberg, 2009; Cheng et 
al., 2010; Zuo, 2011a; Arias et al., 2012). 

In this paper, the hybrid method consisted of 
factor and cluster analysis and concentration-area 
fractal model are used to identify geochemical 
anomalies associated with Au skarn mineralization 
based on stream sediment geochemical data from 
the Zaghar region in the Markazi province, central 
Iran. Geochemical analyses of 109 stream sediment 
samples for Au, Cu, Pb, Zn, Ag, Mo, W, Sn, and As 
collected by the Geological Survey of Iran (GSI) 
have been used to test the proposed approach using 
the factor score (FS) and geochemical 
mineralization probability index (GMPI). In all 
geochemical data distribution maps described in 
this paper, the cumulative percentile equivalent to 
97.5% frequency has been considered as a reference 
value/threshold to evaluate and compare the 
efficiency of the methods discussed in this research. 
 
Geological Setting  
The Zaghar area, of about 34.15 km2, is situated 
about 5 km SW of Tafrash, Central Iran. This area 
is located in the main Iranian Cenozoic magmatic 
belt, known as Urumieh-Dokhtar, which is one of 
the subdivisions of Zagros orogenies (Alavi, 1994). 
This unit extends from NW to SE Iran and hosts 
Iranian large porphyry deposits (Shahabpour, 
1994). The current configuration of geological 
structures of the area was developed during the 
Mesozoic and Cenozoic. The mineral belt also 
coincides with an elevated magnetic field produced 
by the Cenozoic intermediate intrusions 
(Shahabpour, 1994). 

The stratigraphic sequence of the Urumieh-
Dokhtar belt in the study area consists of major 
units. These are: (1) Triassic Formation composed 
of limestone in lower, sandstone and shale in upper 
Triassic sequence; (2) Jurassic Formation, consisted 
of black sandstone and shale; (3) Cretaceous 
sedimentary rocks consisted of limestone, marl, and 
sandy limestone; and (4) Eocene clastic and 
pyroclastic rocks composed of trachyandesitic lava, 
limestone, and acidic tuff (Fig. 1). Brecciated 
limestone of the Cretaceous Formation is the most 
important host rock for the Au deposit which is 
overlain by Eocene Formation. 

The complex, superimposed regional structures 
in this belt include multiple deformational events 
and regional scale faults, such as the NW-SE 

trending faults that controlled the distribution of 
intermediate intrusions and associated 
mineralization (Fig. 1). Magmatic rocks mostly 
intruded after the Eocene period are widespread in 
the region (Hajian, 1999). The Zaghar intrusion is 
consisted of diorite, quartz–diorite, and related 
hornfels. Most Au deposit of the Zaghar mineral 
area is spatially associated with these intermediate 
intrusive bodies. The Zaghar mineralized intrusion 
includes ore bearing stock and several dykes 
(Hajian, 1999). 

One type of Au skarn deposit is recognized in the 
Zaghar mineral area. Almost a deposit of economic 
interest is concentrated within and around the 
northern margins of the Zaghar intrusion and close 
to Zaghar fault. The extent of metasomatic rocks 
and alteration intensity within and around the 
Zaghar intrusion is large and extensive. Skarn is the 
main type of ore deposit in the Zaghar mineral area. 
Deposit and occurrence is located within the contact 
zones between the dioritic intrusions and the 
Cretaceous limestone Formation. The skarn ore 
body at the contact zone between dioritic intrusion 
and the carbonate country rocks are composed of 
hematite, chalcopyrite, pyrite, galena, garnet, 
chlorite, epidote, quartz, and calcite. Many of these 
deposits show spatial zoning. 

Garnet and hematite-bearing exoskarns typically 
occur in an external zone associated with marbles. 
Epidote-bearing endoskarn and altered diorite-type 
ores occur within diorite. Wall-rock alteration is 
well developed around the ore body and consists of 
garnet, albite, chlorite, quartz, carbonates, kaolinite, 
and sericite. Ore minerals of the quartz-sulphide are 
chalcopyrite, pyrite, and minor amounts of galena 
and native gold (Borna, 2004). 
 
Materials and Methods 
Stream sediments and sample collection  
One of the most commonly used geochemical 
exploration methods of prospecting is based on the 
study of active stream sediments. 

According to the definition given by the Forum 
of the European Geological Surveys (FOREGS), 
these are represented by the fine and medium size 
fraction of sediments carried and settled by second 
order streams (Salminen et al., 1998). Stream 
sediments can be considered as averagely 
representative of the outcropping rocks in the 
drainage basin, upstream of the sampling point 
(Lahermo et al., 1996: Fig. 2).  
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Figure 1. Location of study area in Iran and simplified geological map 

 
These input sources have an inhomogeneous 

distribution within catchments and can be localized 
in circumscribed areas (point sources). Conversely, 
inputs rising from erosion/deposition processes are 
widespread in the catchments but act with different 
intensities according to the local geomorphologic 
and hydrological features. 

The Extended Sample Catchment Basin (ESCB) 

mapping technique, discussed in this paper, can be 
used to display the spatial distribution of 
geochemical variables measured in stream 
sediments taking into consideration the 
geomorphologic settings and the hydrographic 
patterns of surveyed areas (Spadoni et al., 2005; 
Spadoni, 2006). 
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Figure 2. Use of ESCB technique in the Zaghar of Tafrash basin 
 

This approach is based on the association of an 
area of statistical representativeness with each 
sample and on the assumption that the 
concentrations measured in the stream sediments 
can be considered as average reference values for 
this area. ESCBs can be easily identified 
considering the position of the sampling points 
within the hydrographic network and using the 
confluences between the streams of highest rank as 
break points for representing changes of the 
geochemical background. 

Over a total basin surface of about 34.15 km2, 
109 stream sediment samples (150 μm particle size 
diameter) were collected with an average sampling 
density of 1 sample/0.31 km2 (Fig. 2).The 
concentration of 9 chemical elements (Au, Cu, Pb, 
Zn, Ag, Mo, W, Sn, and As) was measured by ICP–
MS and the analytical precision was between 1 and 
3%. Afterwards, ESCB mapping were tested and 
compared using GIS functions of spatial analysis. 
 
Data Transformation  
A total of variables (Au, Cu, Pb, Zn, Ag, Mo, W, 
Sn, and As) from 109 stream sediment data were 
used in our analysis. Because these variables are not 
symmetrically distributed, we examined normality 

of each variable based on skewness and, if a 
variable does not have normality, we transformed 
variables (Reimann & Filzmoser, 2000). In our data 
set, none of the variables passed this normality 
distribution (Fig. 3). Therefore, log ratio 
transformations were conducted for the skewed 
variables to achieve normality and transformation 
(Aitchison, 1986; Egozcue et al., 2003; Carranza, 
2011). In our work, the results of isometric log ratio 
(ilr) transformations were nearly similar, and 
therefore, we selected log transformation. 
 
Multivariate Analysis 
In order to determine relationships among the 
elements and the element groups stepwise factor 
analysis, correlation analysis and cluster analysis 
were employed. Results of the analyses were 
evaluated with STATISTICA 8. 

The factor analysis was carried out with the 
principal component method which is, rather than 
the original data, based on the examination of 
dependency among the artificial variables which are 
computed from covariance and correlation 
coefficient matrixes (Jolliffe, 2002; Yousefi et al., 
2012). 
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Figure 3. Comparison of skewness in (A) raw data and (B) log transformation data 

 
In other words, eigenvalues and eigenvectors of 

covariance and correlation coefficient matrixes are 
interpreted. In the meantime, to strengthen the 
factor loads, varimax rotation was performed. Using 
Ward's method, Pearson's correlation coefficients 
cluster analysis (hierarchical cluster analysis) was 
carried out and the results are given in a 
dendrogram.  
 
Fractal modeling 
Fractal and multifractal are two important concepts 
in the fields of non-linear and complexity sciences 
and have been recognized in the geosciences 
(Cheng et al., 1994). Fractal model is a powerful 
tool for identifying geochemical anomalies and/or 
determining geochemical baselines in various 
studies (Cheng et al., 2010; Afzal et al., 2011, 
2013; Carranza, 2011; Arias et al., 2012). Several 
models have been developed for geochemical data. 

The concentration area (C-A) fractal model is 
one of the most important fractal models which is 
widely used in geochemical exploration. This 
model serves to illustrate the correlated relationship 
between the obtained results with the geological, 
geochemical, and mineralogical information. Its 
most useful features are its easy implementation 
and ability to compute quantitative anomalous 
thresholds. Cheng et al. (1994) proposed an element 
C-A fractal model which may be used to define the 
geochemical background and anomalies. 

A sub-catchment map provides a smoothed 
version of the spatial distribution of an element. 
Sub-catchment maps were used to obtain 
approximate relations between areas A(ρ) and 
concentration values ρ, with A(ρ) decreasing for 
increasing ρ. Conversely, the area with 
concentration values less than ρ is an increasing 
function of ρ. If the element concentration per unit 
area satisfies a fractal or multifractal model, then 
the area A(ρ) has indeed a power-law relation with 

ρ. When the concentration per unit area follows a 
fractal model, this power-law relation has only one 
exponent. On the other hand, when the 
concentration per unit area satisfies a multifractal 
model with a spectrum of fractal dimensions, then 
several separate power-law relations between area 
A(ρ) can be established. For a range of ρ close to its 
minimum value ρ, the predicted multifractal power-
law relations are (Eq.1): 
A (ρ ≤ υ) ∝ρ−α1; A (ρ> υ) ∝ρ−a

2                           (1) 
where A(ρ) denotes the area with concentration 
values greater than the catchment value ρ; υ 
represents the threshold; and a1 and a2 are 
characteristic exponents(Afzal et al., 2010; Zuo, 
2011).For most elements of interest, the area A(ρ) 
as determined from sub-catchment maps generally 
has approximately two separate power-law relations 
with ρ over restricted ranges of ρ. Relationships 
between A(ρ) and ρ on log-log plots for element 
which are of a different type. The breaks between 
straight-line segments on this plot and the 
corresponding values of ρ have been used as 
thresholds to separate geochemical values into 
different components, representing different causal 
factors, such as lithological differences and 
geochemical processes (Arias et al., 2012; Geranian 
et al., 2013).Factors such as mineralizing events, 
surficial geochemical element concentrations, and 
surficial weathering are of considerable importance. 

This method has several limitation and accuracy 
problems, especially when the boundary effects on 
irregular geometrical data sets are involved. The C-
A fractal model seems to be equally applicable as 
well to all cases, which is probably rooted in the 
fact that geochemical distributions mostly satisfy 
the properties of a multifractal function. Some 
approaches seem to support the idea that 
geochemical data distributions are multifractal, 
although this point is far from being proven 
(Geranian et al., 2013). This idea may provide and 
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help the development of an alternative 
interpretation validation and useful methods to be 
applied to elemental geochemical distributions 
analysis. 
 
Results and Discussion 
Elemental concentrations of sediments 
Descriptive statistics such as minimum, median, 
mean, maximum, and percentiles (25, and 75%) for 
nine elements used in this study are shown in 
Figure 4 and Table 1. Most of the elements have a 
wide range of variations of several magnitudes. The 
comparison of elements in stream sediments of the 
study area with the values of upper continental crust 
has shown that mean of all elements(except As) 
exhibits high relative to upper continental crust 
based on Rudnick and Gao (2003). Therefore, there 
are many stream sediments that show anomaly 

values and are high relative to background.  
 
Statistical analysis 
We used the principal component analysis for 
extraction of factors. Furthermore, we applied 
varimax rotation of factors (Kaiser, 1958). Then, we 
used a two-step factor analysis to extract 
components representing anomalous multi-element 
geochemical signatures (Yousefi et al., 2012). 

In the first step, factor analysis yielded four 
rotated components, each with eigenvalues greater 
than 1 (Table 2). Nine elements were combined to 
produce four significant factors explaining 66.87% 
of the variance of the original data set (Table 2). 
Most of the variance in the original data set is 
contained in the factor 1 (22.12%), which is 
associated with the component W (Table 2).  

 
Table 1. Statistical parameters of elemental concentrations of sediments 

 Mean Median Minimum Maximum Lower quartile Upper quartile Skewness 

Au 0.020 0.005 0.001 0.240 0.002 0.022 3.600 

Cu 60.49 28.00 4.00 1380 17.00 45.00 7.00 

Pb 20.55 12.00 2.00 320 7.00 20 7.00 

Zn 92.84 75.00 30.00 715 55.00 95.00 5.00 

Ag 0.16 0.14 0.08 0.80 0.12 0.18 3.80 

Mo 7.45 2.40 0.52 400 1.40 4.40 10.00 

W 2.70 2.19 0.30 20 1.13 3.14 3.61 

Sn 4.81 4.30 2.00 12 3.30 6.00 1.13 

As 2.09 1.00 0.30 46 0.50 1.97 7.00 
 

 
Figure 4. Elemental concentrations of sediments in Zaghar area 
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Factor 2 explains 19.87% of the variance and is 
mainly related to elements Pb and Ag. The Sn 
contributes most strongly to the third factor that 
explains 13.47% of the total variance. The fourth 
factor is concerned solely with Au and represents 
11.40% of the total variance. 

We can reduce the number of factors and 
increase the anomaly intensity using stepwise factor 
analysis. Increasing anomaly intensity means that 
the number of adjacent anomalous samples in 

sediments has increased with respect to the total 
number of anomalous samples in the study area. In 
order to achieve this, the data for Cu, Zn, Mo, and 
As which have weak correlations were omitted in 
all factors. Then, results of the second factor 
analysis of the remaining geochemical data were 
used to calculate factor scores for each sample. The 
rotated factor matrix and the factor plot in rotated 
space for the second factor analysis are shown in 
Table 3 and Figure 5.   

 
Table 2. Rotated factor analysis in first step (loadings in bold represent the selected factors based on threshold of 0.7) 

 Factor  1 Factor  2 Factor  3 Factor  4 
Au 0.09 -0.02 0.03 0.82 
Cu 0.06 0.21 -0.54 0.42 
Pb -0.01 0.79 0.10 -0.25 
Zn -0.49 0.40 0.03 -0.49 
Ag 0.07 0.83 0.01 0.18 
Mo 0.59 0.32 -0.25 0.15 
W 0.89 -0.08 0.16 0.02 
Sn 0.10 0.08 0.74 0.02 
As -0.22 0.37 0.56 0.32 

% Total - variance 22.12 19.87 13.47 11.40 
Cumulative - % 22.12 42.00 55.46 66.87 

 
Table 3. Rotated factor analysis in second step of factor analysis (loadings in bold represent the selected factors based on threshold of 
0.7) 

 Factor  1 Factor  2 Factor  3 Factor  4 
Au -0.01 0.01 0.98 0.07 
Pb 0.86 -0.06 -0.16 0.05 
Ag 0.84 0.14 0.16 -0.08 
W -0.01 0.09 0.07 0.98 
Sn 0.05 0.98 0.01 0.09 

% Total - variance 30.03 24.80 19.30 16.17 
Cumulative - % 30.03 54.83 74.14 90.32 

 

 
Figure 5. Factor plot in rotated space in second step of factor analysis 
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Factor 1 represents a Pb-Ag association, factor 2 
is related to Sn, and factor 3 and factor 4 show Au 
and W, respectively. 

According to Tables 2 and 3, the total variance 
relevant to the Pb-Ag association has increased 
from 19.87% in the first factor analysis to 30.03% 
in the second factor analysis. Likewise, the total 
variances relevant to the Sn and Au increased from 
13.47% and 11.40% in the first factor analysis to 
24.80% and 19.31% in the second factor analysis, 
respectively. But the total variances relevant to the 
W decreased from 22.12% in the first factor 
analysis to 16.18%. Consequently, through stepwise 
factor analysis, poor indicator elements are 
removed from the data and the total variance related 
to each factor has been increased. 

In order to reveal relationship between elements 
and element groups in the second factor analysis, 
other multivariate analysis techniques such as 
cluster and correlation matrix analysis were 
performed. Using Ward's method and Pearson's 
correlation coefficients, cluster analysis 
(hierarchical cluster analysis) was carried out and 
the results are given in a dendrogram (Fig. 6). 
Results of cluster analysis indicate that the elements 
comprise two main groups. The first group is 

composed of Ag and Pb. The second group is 
composed of three subgroups and consisting of Au, 
W and Sn. Both groups coincide with the results of 
factor analysis and correlation coefficients in 
correlation analysis (Table 4). 

Factor analysis allows us to calculate a single 
value for each factor (Cheng et al., 2011; Zao, 
2011). For example, instead of analyzing separate 
element maps, we can establish a linear relationship 
among variables and plot a single map as called 
factor score map (FS) showing the distribution of 
such relationship(Yousefi et al., 2012; 2013). 
Distribution maps of FS1 (Pb-Ag), FS2 (Sn), FS3 
(Au), and FS4 (W) are represented as interpolated 
values (Fig. 7). Potential map was obtained by 
combining individual FS maps into a single 
geochemical predictive map and locations of the 
study area were selected as target areas for further 
exploration of the deposit-type. After the FSs of 
each sample, weights should be assigned to each 
sample to represent probability of the presence of 
the deposit-type upstream of the sample.The 
weights are here called the geochemical 
mineralization probability index map (GMPI: Zuo 
et al., 2009a; Yousefi et al., 2012). 

 
 

Table 4. Pearson correlation coefficient matrix for elements in the sediments (p≤0.01) 
 Au Pb Ag W Sn 

Au 1     
Pb -0.09 1  
Ag 0.07 0.47 1   
W 0.13 -0.02 -0.03 1  
Sn 0.03 0.03 0.12 0.17 1 
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Figure 6. Dendogram depicting the hierarchical clustering of the elements 
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Figure 7. FS distribution map for (A) Pb-Ag(FS1); (B)Sn(FS2); (C) Au(FS3); and (D) W(FS4) indicator factor based on maximum, 
99.5%, 97.5%, 84%, 75%, 50%, 25%, and minimum contents 
 

In general factor analysis, the response variable 
is continuous and the values outside the [0, 1] range 
are inappropriate if the response variable relates to 
probability. In order to constrain the values of the 
predicted response variable within the unit interval 
[0,1], Yousefi et al. (2012,2013,2014) and Yousefi 
and Carranza (2015) recommended using a logistic 
model to represent the probability by Eq. (2). 

 
GMPI= e MS /1+eFS                                               (2) 
where FS is the factor score of each sample per 
indicator factor obtained in a factor analysis. The 
GMPI is, therefore, a fuzzy weight of each stream 
sediment geochemical sample for each indicator 
factor. In this way, the weights of different classes 
of evidential maps are calculated based on the FSs 

of samples per indicator factor obtained in the 
stepwise factor analysis. Values of the GMPI 
corresponding to cumulative content of maximum, 
99.5%, 97.5%, 84%, 75%, 50%, 25%, and 
minimum were determined for the Pb-Ag, Sn, Au, 
and W indicator factors (Table 5) for mapping 
purposes. 

In this study, the distributions of GMPI for 
indicator factors are represented as interpolated 
values (Fig. 8). A value of the GMPI corresponding 
to cumulative percentile of 97.5% frequency was 
selected as the threshold value to separate 
anomalous and background samples, like in the FS 
distribution maps (Fig. 7). The map of the first 
factor score (FS1) and geochemical mineralization 
probability index (GMPI1: Figs.7, 8, 1) shows high 
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values disposed in silicified hornfels related to 
dioritic intrusive, tuff, and trachy -andesitic lava in 
Eocene. 

The first factor scores represent, however, mixed 
geochemical populations because the Urumieh-
Dokhtar belt has a complex geological structure and 
different tectonic zones showing different 

geochemical background ranges and thresholds. 
The second factor scores (FS2) and geochemical 
mineralization probability index (GMPI2) represent 
the high-frequency anomaly which is generally 
related to diorite intrusive and silicified hornfels 
which are favorable areas for Sn deposits. 

 
Table 5. The FS and GMPI values corresponding to cumulative contents of maximum, 99.5%, 97.5%, 84%, 75%, 50%, 25% and 
minimum for Pb-Ag, Sn, Au and W indicator factors 

 Factor Score(FS) Geochemical mineralization probability index (GMPI) 
 FS1 FS2 FS3 FS4 GMPI1 GMPI2 GMPI3 GMPI4 

Min -1.81 -1.87 -1.46 -2.45 0.14 0.13 0.19 0.08 
25% -0.63 -0.72 -0.78 -0.71 0.35 0.33 0.31 0.33
50% -0.17 0.01 -0.14 0.07 0.46 0.50 0.46 0.52 
75% 0.52 0.72 0.80 0.60 0.63 0.67 0.69 0.65 
84% 0.60 0.76 1.02 0.70 0.66 0.69 0.72 0.68 

97.5% 0.70 0.80 1.08 0.80 0.67 0.70 0.73 0.70 
99.5% 0.80 0.85 1.10 0.90 0.69 0.72 0.75 0.72 
Max. 3.57 2.50 2.59 2.84 0.97 0.92 0.93 0.94 

 

 
Figure 8. GMPI distribution map for (A) Pb-Ag(GMPI1); (B)Sn(GMPI2); (C) Au(GMPI3); and (D) W(GMPI4) indicator factor based 
on maximum, 99.5%, 97.5%, 84%, 75%, 50%, 25%, and minimum contents 
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The third factor scores (FS3) and geochemical 
mineralization probability index (GMPI3) map 
(Figs. 7, 8, 1) show that high values occur along 
Zaghar fault, or in the vicinity of fault intersections 
with Cretaceous limestone and in acidic dyke, 
which are favorable areas for Au skarn deposits. 
These results indicate potential for the discovery of 
Au skarn deposits in the study area. The forth factor 
scores (FS4) and geochemical mineralization 
probability index (GMPI4) represent the high-
frequency anomaly, which is generally related to 
marl with limestone, tuff, and andesitic, basaltic 
lava in Eocene which are favorable zones for W 
deposits. 
 
Separation of anomaly and background using 
multifractal modeling 
The area was divided to 109 sub-catchments. The 
proposed sub-catchments pattern is put to use 

because the fundamentals of C-A fractal model is 
based on the existence of partition function. The 
necessary and the needed partition function to be 
used in fractal models is based upon assumption of 
having a catchment characterization in the area in 
order to find and calculate the area which has a 
certain ore grade (Cheng et al., 1994; Spadoni et 
al., 2005). The C-A relations were computed by 
assigning an area of influence to each sampled point 
and summing all elemental areas whose 
concentration lies below a given value. This 
procedure was repeated for different elemental 
concentrations (Zuo & Xia, 2009; Carranza, 2010; 
Afzal et al., 2010, 2013; Arias et al., 2012; 
Geranian et al., 2013; Soltani et al., 2014). The 
evaluated grades in catchments were sorted out 
based on decreasing grades and cumulative areas 
were calculated for grades (Cheng et al., 1994). 

 

 
Figure 9. C-A log plots for (A) Pb;(B)Ag; (C)Sn;(D) Au; and (E) W component 
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The C-A fractal model was applied to decompose 
the mixed geochemical populations and identify 
geochemical anomalies in all component scores. 
Finally, log-log plots were constructed for Pb, Ag, 
Sn, Au, and W (Fig. 9).  

Generally, the number of straight lines to be 
fitted to the data using the least squares method can 
be determined in terms of (1) how good the fitting 
will be, (2) how significant the difference between 
the slops of straight lines fitted to the data will be, 
and (3) whether the results can be geologically 
interpreted (Arias et al., 2012). 

In this study, the C-A fractal plot can be fitted 
either with four straight lines (four-line model), or 
single straight line (one-line model). The regression 
errors for four-line model are lower than those of 
one-line model, indicating that the four-line model 
is better than one-line model. Four-line model is 
applied to fit the C-A fractal plot (Fig. 9). The right-
hand lines represent the low, medium, and high-
frequency anomaly and the left-hand line represents 
the low-frequency background component which 
may be related to favorable rock types (Arias et al., 
2012).  

On the basis of this procedure, there are several 
populations for Pb, Ag, Sn, Au, and W respectively 
as shown in Figure 9, but we selected the best 
population. Lead anomalous threshold is 52 mg/kg 
based on log-log plot as depicted in Figure 9. Silver 
log-log plot shows that major Ag enrichment 
occurred at 0.25 mg/kg. Tin anomalous threshold is 
about 9.0 mg/kg. Major Au enrichment started from 
0.0251 mg/kg, and for W is 6.2 mg/kg. Break 
between the straight-line segment and the 
corresponding values of Pb, Ag, Sn, Au, and W 
have been used as cut-offs to reclassify catchment 
values in the interpolated maps (Geranian et al., 
2013). 

The main maps are indicated in Figure 10. 
Interpolated maps of the distribution of Pb, Ag, Sn, 
Au, and W, based on the modeled populations by 
the values equal to maximum, 99.5%, 97.5%, 84%, 
75%, 50%, 25%, and minimum cumulative contents 
are presented in Figure 10. A final main map value 
corresponding to 97.5% cumulative percentile is 
used to generate the final distribution map for 
comparison with the multifractal maps obtained 
from fractal model (Fig. 11). The 97.5% cumulative 
percentile has been considered in all distribution 
maps for comparison purposes. The anomaly map 
(Fig. 11) shows that high values of Au follow an 

NE–SW trend and occur around mapped intrusions 
close to limestone in northern part of the study area 
and along NE–SW trending dykes or in the vicinity 
of fault intersections, which are favorable areas for 
Au skarn deposits. 

Figures 10 and 11 show the target areas for Au 
delineated by means of Au concentration values and 
fractal model. Target areas delineated based on 
concentration values and fractal model is mainly 
located in the NE-SW part of the study area. The 
most favorable areas for occurrence of Au deposits 
are mainly located in the SW which has been 
classified as skarn deposit area since more than 5 
Au deposits have already been discovered in it, 
whereas no Au deposits have been discovered in 
other areas. The Au anomalies in other areas 
probably mainly reflect higher background values. 
The C-A fractal model proposed by Cheng et al. 
(1994) was used for separation of anomalies from 
background. 

Figure 9 shows the log-log plots of Au values 
versus area for the whole study area. Figure 11 
shows the target areas for Au delineated on the 
basis of Au≥0.0030 mg/kg, Au≥0.0060 mg/kg, and 
Au≥0.0251 mg/kg for the whole study area. 
Comparing different methods such as factor score 
(FS-Au), geochemical mineralization probability 
index (GMPI -Au), main concentration (Au), and 
fractal model (Fr-Au) in Figure 12, the main 
difference is the area occupied by Au deposits. The 
targets in Figure 12 are nearly similar, indicating 
that the fractal model and other methods could 
clearly identify high anomalies for the study area. 
However, the target areas for Au deposits in fractal 
model (Fr-Au) are like those in main concentration 
(Au) in the study area. 

The anomaly map (Fig. 12) shows that high 
values of Au follow an NW–SE trend and occur 
around mapped intrusions and along NW–SE 
trending faults or in the vicinity of fault 
intersections, which are favorable areas for skarn 
deposits. These results indicate potential for 
discovery of Au skarn deposits in the study area. 
The integrated anomalies of Pb, Ag, Sn, and W 
occurring around the intrusions and in the vicinity 
of faults in the center part of the study area should 
be further investigated in the next step of mineral 
resource exploration. However, the anomalies 
occurring in southern part of the study area may be 
caused by high background concentration values of 
bed rocks.  
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Figure 10. Distribution map of (A) Pb, (B) Ag, (C) W, (D) Au; and (E) Sn, plotted based on maximum, 99.5%, 97.5%, 84%, 75%, 50%, 
25%, and minimum contents 
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Figure 11. Distribution map of(A) Pb,(B)Ag,(C) Sn, (D)Au; and (E)W, plotted based on threshold of fractal method 
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Figure 12. Targets delineated by means of factor score A) (FS-Au), B) geochemical mineralization probability index (GMPI -Au), C) 
fractal method (Fr-Au), and D) main concentration (Au) 
 

Conclusions 
This study suggests that the Urumieh-Dokhtar Belt 
in Zaghar region of Tafrash city has great potential 
for skarn-type deposits. In this study, the statistical 
analysis and C-A fractal model were used to 
identify geochemical anomalies associated with Au 
skarn mineralization. The following conclusions are 
obtained: 
- Non-indicator factors and elements are recognized 
through stepwise factor analysis and cluster 
analysis. 
- Stepwise factor analysis increases the percentage 
of total explained data variance by removal of non-
indicator elements. 
-Anomaly intensity, especially around known 

dioritic intrusions, is enhanced in the FS and GMPI 
anomaly maps. 
-The target Au map area indicates that the fractal 
model along with other methods represent similar 
trend for high anomalies of Au deposits. 
- The anomaly map shows that Au deposits occur 
around intrusions and along dykes or in the vicinity 
of fault intersections with the Cretaceous limestone 
which are favorable areas for Au skarn 
prospectivity. 
-The integrated anomalies of Pb-Ag, Sn, Au, and W 
occurring around the intrusions and in the vicinity 
of dykes should be further investigated in the next 
phase of mineral exploration. 
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