Systematic fractures analysis using image logs and complementary methods in the Marun Oilfield, SW Iran

Document Type : Research Paper


1 Department Geology, Chamran, University, Ahvaz, Iran

2 National South Iranian Oil Company (NISOC), Studies office, Ahvaz, Iran


Fractures are considered as one of the important structures in fractured reservoirs due to their effect on fluid currents and reservoir
parameters such as porosity and permeability. Fracture parameters can only be directly calculated with core and image logs. Cores have
serious limitations, so image logs are the best method. The aim of this study is the systematic fractures analysis of the Asmari
Formation in the Marun field as one of the giant oilfields in world. The main objectives of image logs were evaluating structural dip,
characterizing natural fractures and field structure heterogeneity, and finally correlating the results with complimentary methods such
as Velocity Deviation Log (VDL), Repeat Formation Test (RFT), mud lost data, and isodip map in the carbonate Asmari Formation.
Generally, electric and ultrasonic imaging tools record vast amounts of high-resolution data. This enables geoscientists to describe in
detail the structural fracture networks. The results indicate that the highest fracture density is in the zones 1, 20, and 30 of the Asmari
reservoir that show high correlation with VDL and mud lost data. Image logs also show a range of bedding dips from 20˚ in the
northern limb to 30˚ in the southern limb with strikes ranging from 10˚ to 270˚N. Regarding the general pattern of fractures, it is
evident that they are related to the folding and are classified mainly as longitudinal, transverse, and oblique. The longitudinal pattern is
dominant and often forms open fractures. They are characterized by N50W-S50E and mainly observed in the upper Asmari zones.
Moreover, to find the vertical relation of the layer and fractures, RFT data were used. The findings revealed the presence of a vertical
relation in the upper horizons of the reservoir, especially in the eastern section due to the high fracture density.


Article Title [Persian]

تحلیل سیستماتیک شگستگی های میدان مارون با استفاده از نمودارهای تصویرگر و روش های تکمیلی

Authors [Persian]

  • ایمان زحمت کش 1
  • قاسم عقلی 1
  • روح انگیز محمدیان 2
2 شرکت ملی مناطق نفتخیز جنوب
Abstract [Persian]

شکستگی ها به دلیل تاثیر بر پارامترهای مخزنی مانند تخلخل و تراوایی، یکی از مهمترین پارامترها در مخازن شکسته هستند. شکستگی‌ها تنها با استفاده از مغزه و نمودارهای تصویرگر به صورت مستقیم مطالعه می‌شوند. به دلیل محدودیت‌های استفاده ازمغزه، نمودارهای تصویرگر بهترین ابزارها می‌باشند. هدف این مقاله بررسی سیستماتیک شکستگی‌های مخزن آسماری میدان نفتی مارون به عنوان یکی از بزرگترین مخازن نفتی جهان است. در این مطالعه، از نمودارهای تصویرگر برای تفسیر شکستگی‌ها و هتروژنی مخزن استفاده شد و در نهایت نتایج حاصل با سایر روش‌های تکمیلی مانند نمودار انحراف سرعت، لایه آزمایی مکرر چاه، هرزروی گل و نقشه‌های هم‌شیب مقایسه شدند. به طور کلی نمودارهای تصویرگر حجم زیادی از اطلاعات با قدرت تفکیک بالا را ذخیره می‌کنند که این مهم به مفسران کمک شایانی می‌کند. نتایج این تحقیق تمرکز بالای شکستگی‌ها را در زون‌های 1، 20 و 30 نشان می‌دهد که انطباق بالایی با نتایج نمودار انحراف سرعت و هرزروی گل حفاری دارد. نمودارهای تصویرگر میانگین شیب لایه‌بندی را از 20 درجه در یال شمالی تا 30 درجه در یال جنوبی با امتداد 270 درجه از شمال نشان می‌دهد. به طور کلی شکستگی‌های این میدان از نوع مرتبط با چین می‌باشند که به سه دسته طولی، عرضی و مورب تقسیم می‌شوند که نوع طولی غالب، و بیشتر شکستگی‌های باز را شامل می‌شود. در این مطالعه، داده‌های چاه آزمایی مکرر برای بررسی ارتباط بین لایه‌ها و شکستگی‌ها استفاده شدند. نتایج حاصله بیشترین ارتباط بین لایه‌ها را را در قسمت شرقی میدان نشان می‌دهد که دلیل آن تمرکز بالای شکستگی‌ها در این قسمت میدان است.

Keywords [Persian]

  • مخزن آسماری
  • متدهای تکمیلی
  • تحلیل شکستگی
  • نمودارهای تصویرگر
  • میدان مارون
Aghli, G., 2013. Fracture analysis of the Asmari reservoir in Balarud oilfield using the image logs: M.Sc dissertation,
Shahid Chamran University, Ahvaz, Iran.
Aghli, G., H. Fardin, R. Mohamadian, G. Saedi, 2014. Structural and Fracture analysis using EMI and FMI image Log in
the Carbonate Asmari Reservoir ( Oligo-Miocene ), SW Iran. 4( 2): 43–58.
Alavi, M., 2004, Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American
Journal of Science. 304 (1): 1–20
Alavi, M., 2007, Structures of the Zagros fold-thrust belt in Iran: American Journal of science, 307 (9):1064–1095.
Anselmetti, F. S., and G. P. Eberli, 1999, The velocity-deviation log: a tool to predict pore type and permeability trends in
carbonate drill holes from sonic and porosity or density logs: AAPG bulletin. 83(3): 450- 466.
Aqrawi, A. A. M., 1993, Miocene evaporitic sequence of the southern Mesopotamian Basin: Marine and petroleum
geology. 10 (2): 172–179.
Blanc, E.-P., M. B. Allen, S. Inger, and H. Hassani, 2003, Structural styles in the Zagros simple folded zone, Iran: Journal
of the Geological Society.160 ( 3)401–412.
Brie, A., Johnson, D. L., Nurmi, R. D., 1985. Effect of spherical pores on sonic and resistivity measurements, in SPWLA
26th Annual Logging Symposium: Society of Petrophysicists and Well-Log Analysts.
Darling, T., 2005. Well Logging and Formation Evaluation: Elsevier Science, Gulf drilling guides.
Fossen, H., 2010. Structural Geology: Cambridge, Cambridge University Press.
Gardner, G. H. F., Gardner, L. W., Gregory, A. R., 1974. Formation velocity and density-the diagnostic basics for
stratigraphic traps: Geophysics. 39 (6): 770–780.Gholipour, A. M., 1998, Patterns and structural positions of productive fractures in the Asmari Reservoirs, Southwest Iran:
Journal of Canadian Petroleum Technology. 37( 1): 44-50.
Guadagno, F. M., Nunziata, C., 1993. Seismic velocities of fractured carbonate rocks (southern Apennines, Italy):
Geophysical Journal International.113 (3): 739- 746.
Halliburton, 1996. Electrical Micro Imaging Service (Sales Kit): Halliburton.
Haynes, S. J., McQuillan, H., 1974. Evolution of the Zagros suture zone, southern Iran: Geological Society of America
Bulletin. 85 (5): 739–744.
Ja’fari, A., A. Kadkhodaie-Ilkhchi, Y. Sharghi, and K. Ghanavati, 2011, Fracture density estimation from petrophysical log
data using the adaptive neuro-fuzzy inference system: Journal of Geophysics and Engineering. 9 (1): 105–114.
Khoshbakht, F., Azizzadeh, M., Memarian, H., Nourozi, G. H., Moallemi, S. a., 2012: Comparison of electrical image log
with core in a fractured carbonate reservoir: Journal of Petroleum Science and Engineering. 86-87: 289–296.
Khoshbakht, F., Memarian, H., Mohammadnia, M., 2009. Comparison of Asmari, Pabdeh and Gurpi formations' fractures,
derived from image log: Journal of Petroleum Science and Engineering. 67 (1-2): 65–74,
Martinez, L. P., Hughes, R. G., Wiggins, M. L., 2002. Identification and Characterization of Naturally Fractured
Reservoirs Using Conventional Well Logs.
Mohebbi, A., M. Haghighi, and M. Sahimi, 2007, Conventional Logs for Fracture Detection & Characterization in One of
the Iranian Fields, in International Petroleum Technology Conference: International Petroleum Technology Conference.
Nelson, R., 2001, Geologic analysis of naturally fractured reservoirs: Gulf Professional Publishing.
Nie, X., Zou, C., Pan, L., Huang, Z., Liu, D., 2013. Fracture analysis and determination of in-situ stress direction from
resistivity and acoustic image logs and core data in the Wenchuan Earthquake Fault Scientific Drilling Borehole-2 (50–
1370m): Tectonophysics. 593:161–171
Rajabi, M., Sherkati, S., Bohloli, B., Tingay, M., 2010. Subsurface fracture analysis and determination of in-situ stress
direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran:
Tectonophysics. 492 (1-4): 192–200.
Rezaee, M. R., Chehrazi, A., 2005. Fundamentals of Well Log Interpretation: Tehran, University of Tehran (in Persian).
Roberts, A., 2001, Curvature attributes and their application to 3D interpreted horizons. 19: 85-100.
Saedi, G., 2010, Fracture analysis of Asmari reservoir in Lali oilfield using the FMI image log: Shahid Chamran
University, Ahvaz, Iran.
Schlumberger, 1994, FMI Fullbore Formation MicroImager: Houston, Schlumberger Educational Services.
Schlumberger, 2005. GeoFrame 4.2, BorView User’s Guide: Schlumberger Ltd.
Schlumberger, 2003. Using borehole imagery to reveal key reservoir features, in Reservoir Optimization Conference.
Serra, O., 1989. Formation MicroScanner image interpretation: Schlumberger Educational Services.
Serra, O., Serra, L., 2004.Well logging: data acquisition and applications.
Stocklin, J., 1968. Structural history and tectonics of Iran: a review: AAPG Bulletin. 52 (7): 1229–1258.
Thompson, L. B., 2000. Fractured reservoirs: Integration is the key to optimization: Journal of petroleum technology. 52
(2): 52–54.
Tingay, M., Reinecker, J. , Müller, B., 2008. Borehole breakout and drilling-induced fracture analysis from image logs:
World Stress Map Project. p. 1–8.
Tokhmchi, B., Memarian, H., Rezaee, M. R., 2010. Estimation of the fracture density in fractured zones using
petrophysical logs: Journal of Petroleum Science and Engineering. 72 (1): 206- 213.
Wennberg, O. P., Azizzadeh, M., Aqrawi, A. A. M., Blanc, E., Brockbank, P., Lyslo, K. B., Pickard, N., Salem, L. D.,
Svana, T., 2007. The Khaviz Anticline: an outcrop analogue to giant fractured Asmari Formation reservoirs in SW Iran.
Wyllie, M. R. J., Gregory, A. R., Gardner L. W., 1956. Elastic wave velocities in heterogeneous and porous media:
Geophysics. 21 (1): 41–70.