Some chemical variations in biotite, phlogopite, and muscovite, considering their tectonic setting

Document Type : Research Paper

Authors

1 Department of Geology, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran

2 Department of Geology, Mashhad Branch, Islamic Azad University, Mashhad, Iran

3 Department of Earth Sciences, University of Tabriz, Tabriz, Iran

Abstract

Several studies have been conducted to investigate the composition of micas (especially biotite) with the magmatic suites of the host rock (especially granitoid), thus to understand the tectonic environment of the host rock. This study deals with the issue of what compositional trends or elemental correlations exist in igneous micas when a large dataset with a given tectonic environment is used. In this regard, variations in the chemical composition of biotite, phlogopite, and muscovite from three tectonic environments were investigated, regardless of the composition of their host rock. Enrichment of Fe or Mg in micas, such as Mg-rich biotite or Fe-rich phlogopite, can make us wrong in determining whether a mineral is primary or secondary based solely on chemical composition. The negative and good correlation between FeO and MgO caused biotites and phlogopites of all three tectonic environments to follow the trend of the calc-alkaline orogenic suites of Abdel-Rahman's classification. Considering the excellent and negative correlation between Al and Mg in muscovite, the substitution of 2Mg2+ = 3Al3+ is significant in this mineral. The data distribution shows that biotites and phlogopites belonging to rift and convergent environments can be divided into Al-rich and Al-poor groups or Mg-rich and Mg-poor groups.

Keywords

Main Subjects


Article Title [Persian]

_

Abdel-Rahman, A.F.M., 1994. Nature of biotites from alkaline, calc-alkaline, and peraluminous
magmas. Journal of Petrology, 35: 525-541.
Abrecht, J., Hewitt, D.A., 1988. Experimental evidence on the substitution of tin in biotite. American
Mineralogist, 73: 1275-1284.
Afshooni, S.Z., Mirnejad, H., Esmaeily, D., Asadiharoni, H., 2013. Mineral chemistry of hydrothermal
biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran. Ore
Geology Reviews, 54: 214-232.
Ashrafi, N., Jahangiri, A., Ameri, A., Hasebe, N., Eby, G.N., 2009. Biotite mineral chemistry of the
Bozqush and Kaleybar alkaline igneous intrusions, NW Iran. Iranian Journal of Crystallography
and Mineralogy, 17: 381-394 (in Persian with English abstract). http://ijcm.ir/article-1-568-
fa.html
Ayati, F., Yavus, F., Noghreyan, M., Haroni, H.A., Yavuz, R., 2008. Chemical characteristics and
composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province
of Iran. Mineralogy and Petrology, 94: 107-122.
Barbarin, B., 1990. Granitoids: Main petrogenetic classifications in relation to origin and tectonic
setting. Geological Journal, 25: 227-238.
Boomeri, M., Mizuta, T., Ishiyama, D., Nakashima, K., 2006. Fluorine and chlorine in biotite from the
Sarnowsar granitic rocks, northeastern Iran. Iranian Journal of Science and Technology, Transaction
A30 (A1): 111-125.
Boomeri, M., Nakashima, K., Lentz, D.R., 2009. The Miduk porphyry Cu deposit, Kerman, Iran: a
geochemical analysis of the potassic zone including halogen element systematic related to Cu
mineralization processes. Journal of Geochemical Exploration, 103: 17-29.
Cottrell, E., Birner, S.K., Brounce, M., Davis, F.A., Waters, L.E., Kelley, K.A., 2021. Oxygen Fugacity
Across Tectonic Settings. In: Moretti, R., Neuville, D.R. (Eds.), Magma Redox Geochemistry.
American Geophysical Union, pp. 33-61. https://doi.org/10.1002/9781119473206.ch3
Deer, W.A., Howie, R.A., Zussman, J., 2013. An Introduction to the Rock Forming Mineral. Third
Longman Editions, 498 pp.
Feng, Y., Deng, C., Xiao, B., Gong, L., Yin, R., Sun, D., 2021. Biotite geochemistry and its implication
on the temporal and spatial difference of Cu and Mo mineralization at the Xiaokele porphyry Cu-Mo
deposit, NE China. Ore Geology Reviews, 139: 104508. https://doi.org/10.1016/j.oregeorev.2021.
104508
Foley, S.F., Prelevic, D., Rehfeldt, T., Jacob, D.E., 2013. Minor and trace elements in olivines as probes
into early igneous and mantle melting processes. Earth and Planetary Science Letters, 363: 181-191.
324 Ashrafi et al.
Foster, M.D., 1960. Interpretation of the composition of lithium micas. US Geological Survey, 354: 11-
49.
Heinrich, E.W., 1946. Studies in the mica group; the biotite-phlogopite series. American Journal of
Science, 244(12): 836-848.
Huang, Y., Nakatani, T., Nakamura, M., Mccammon, C., 2019. Saline aqueous fluid circulation in
mantle wedge inferred from olivine wetting properties. Nature Communications, 10: 1-10.
Janousek, V., Farrow, C.M., Erban, V., 2006. Interpretation of whole-rock geochemical data in igneous
geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47: 1255-
1259.
Kovalenko, V.I., Naumov, V.B., Girnis, A.V., Dorofeeva, V.A., Yarmolyuk, V.V., 2007. Average
compositions of magmas and mantle sources of mid-ocean ridges and intraplate oceanic and
continental settings estimated from the data on melt inclusions and quenched glasses of basalts.
Petrology, 15(4): 335-368.
Liu, J.Q., Chen, L.H., Wang, X.J., Zhong, Y., Yu, X., Zeng, G., Erdmann, S., 2017. The role of meltrock
interaction in the formation of Quaternary high-MgO potassic basalt from the Greater Khingan
Range, northeast China. Journal of Geophysical Research: Solid Earth, 122: 262-280.
Moshefi, P., Hosseinzadeh, M.R., Moayyed, M., Lentz, D.R., 2020. Distinctive geochemical features of
biotite types from the subeconomic Sonajil porphyry-type Cu deposit, northwestern Iran:
implications for analysis of porphyry copper deposit mineralization potential. Journal of
Geochemical Exploration, 214: 106543.
Mullen, E.D., 1983. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic
environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62: 53-62.
Munoz, J.L., 1984. F-OH and Cl-OH exchange in mica with application to hydrothermal ore deposits.
Reviews in Mineralogy, 13: 469-493.
Munoz, J.L., 1992. Calculation of HF and HCl fugacities from biotite compositions: revised equations.
Geological Society of America Abstracts with Programs, 24: p. 221.
Nachit, H., Ibhi, A., Abia, E.H., Ohoud, M.B., 2005. Discrimination between primary magmatic biotites,
reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience, 337: 1415-1420.
Nachit, H., Razafimahefa, N., Stussi, J.M., Caron, J.P., 1985. Composition chimique des biotites et
typologie magmatique des granitoïdes. Comptes rendus hebdomadaires des séances de l'Académie
des sciences, 301: 813-818.
Patiño Douce, A.E., 1993. Titanium substitution in biotite: an empirical model with applications to
thermometry, O2 and H2O barometries, and consequences for biotite stability. Chemical Geology,
108: 133-162.
Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guoggenheim, S.,
Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, F.P., Takeda, H.,
Weiss, Z., Wones, D.R., 1998. Nomenclature of the micas. Canadian Mineralogist, 36: 41-48.
Saha, R., Upadhyay, D., Mishra, B., 2021. Discriminating tectonic setting of igneous rocks using biotite
major element chemistry−A Machine Learning Approach. Geochemistry, Geophysics, Geosystems,
22(11): e2021GC010053 https://doi.org/10.1029/2021GC010053
Samadi, R., Torabi, G., Kawabata, H., Miller, N.R., 2021. Biotite as a petrogenetic discriminator:
Chemical insights from igneous, meta-igneous and meta-sedimentary rocks in Iran. Lithos 386-387,
106016.
Schmidt, M.W., Jagoutz, O., 2017. The global systematics of primitive arc melts. Geochemistry,
Geophysics, Geosystems, 18: 2817-2854
Shabani, A.A.T., Lalonde, A.E., Whalen, J.B., 2003. Composition of biotite from granitic rocks of the
Canadian Appalachian orogen: A potential tectonomagmatic indicator? Canadian Mineralogist,
41(6): 1381-1396.
Stussi, J.M., Cuney, M., 1996. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas
by Abdel-Fattah M. Abdel-Rahman: a comment. Journal of Petrology, 37: 1025-1029.
Ueki, K., Iwamori, H., 2014. Thermodynamic calculations of the polybaric melting phase relations of
spinel lherzolite. Geochemistry, Geophysics, Geosystems, 15: 5015-5033.
Van Middelaar, W.T., Keith, J.D., 1990. Mica chemistry as an indicator of oxygen and halogen
fugacities in the Can Tung and other W-related granitoids in the North American Cordillera. In:
Stein, H.J., Hannah, J.L. (Eds.), Ore-bearing Granite Systems; Petrogenesis and Mineralizing
Geopersia 2024, 14(2): 307-325 325
Process. Geological Society of America, Special Paper 246: 205-220.
Wones, D.R., Eugster, H.P., 1965. Stability of biotite: Experiment, theory, and application. American
Mineralogist, 50: 1228-1272.
Zhang, W., Lentz, D.R., Thorne, K.G., McFarlane, C., 2016. Geochemical characteristics of biotite from
felsic intrusive rocks around the Sisson Brook W-Mo-Cu deposit, west central New Brunswick: an
indicator of halogen and oxygen fugacity of magmatic systems. Ore Geology Reviews, 77: 82-96.