Afshari, A., Shadizadeh, S. R., Riahi, M. A., 2014. The Use of Artificial Neural Networks in Reservoir Permeability Estimation From Well Logs: Focus on Different Network Training Algorithms: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36: 1195-1202.
Akhoundzadeh, H., Moghadasi, J., Habibnia, B., 2011. Correlation of Pore Volume Compressibility with Porosity in One of the Iranian Southern Carbonate Reservoirs, Third National Petroleum Engineering Congress: Tehran, Iran, p. 16.
Ashena, R., Behrenbruch, P., Ghalambor, A., 2020. Log-based rock compressibility estimation for Asmari carbonate formation: Journal of Petroleum Exploration and Production Technology, 10 (7):2771-2783.
Assadi, A., Honarmand, J., Moallemi, S. A., Abdollahie-Fard, I., 2023. Impacts of Depositional Facies 12 Vali & Hajizadeh
and Diagenesis on Reservoir Quality: A Case Study from the Rudist-bearing Sarvak Formation, Abadan Plain, SW Iran: Acta Geologica Sinica - English Edition, 97 (1): 190-206.
Azadpour, M., Shad Manaman, N., Kadkhodaie-Ilkhchi, A., Sedghipour, M.-R., 2015. Pore pressure prediction and modeling using well-logging data in one of the gas fields in south of Iran: Journal of Petroleum Science and Engineering, 128: 15-23.
Bachir, M., 2014. Evaluation of shale compressibility from NMR and MICP measurements [MSc: University of Oklahoma, 105 p.
Burden, F., Winkler, D., 2008. Bayesian regularization of neural networks: Methods Mol Biol, 458: 25- 44.
Chaki, S., Routray, A., Mohanty, W. K., 2022. A probabilistic neural network (PNN) based framework for lithology classification using seismic attributes: Journal of Applied Geophysics, 199: 104578.
Cheng, M., Fu, X., Kang, J., 2020. Compressibility of Different Pore and Fracture Structures and Its Relationship with Heterogeneity and Minerals in Low-Rank Coal Reservoirs: An Experimental Study Based on Nuclear Magnetic Resonance and Micro-CT: Energy & Fuels, v. 34, no. 9, p. 10894-10903.
Chopra, S., Marfurt, K. J., 2007. Seismic Attributes for Prospect Identification and Reservoir Characterization, Society of Exploration Geophysicists, Seismic Attributes for Prospect Identification and Reservoir Characterization.
Crawford, B. R., Sanz, P. F., Alramahi, B., DeDontney, N. L., 2011. Modeling And Prediction of Formation Compressibility And Compactive Pore Collapse In Siliciclastic Reservoir Rocks, in Proceedings 45th U.S. Rock Mechanics / Geomechanics Symposium, Volume All Days: ARMA-11-384.
da Silva, G. P., Franco, D. R., Stael, G. C., da Costa de Oliveira Lima, M., Sant'Anna Martins, R., de Moraes França, O., Azeredo, R. B. V., 2015. Petrophysical studies of north American carbonate rock samples and evaluation of pore-volume compressibility models: Journal of Applied Geophysics, 123: 256-266.
Daïm, F., Eymard, R., Hilhorst, D., Mainguy, M., Masson, R., 2002. A Preconditioned Conjugate Gradient Based Algorithm for Coupling Geomechanical-Reservoir Simulations: Oil & Gas Science and Technology - Rev. IFP, 57 (5): 515-523.
Esrafili-Dizaji, B., Rahimpour-Bonab, H., 2019. Carbonate Reservoir Rocks at Giant Oil and Gas Fields in SW Iran and the Adjacent Offshore: a Review of Stratigraphic Occurence and Poro-Perm Characteristics: Journal of Petroleum Geology, 42 (4): 343-370.
Farahani, M., Aghaei, H., Saki, M., Asadolahpour, S. R., 2022. Prediction of pore volume compressibility by a new non-linear equation in carbonate reservoirs: Energy Geoscience, 3 (3): 290-299.
Feng, R., Pandey, R., 2017. Investigation of Various Pressure Transient Techniques on Permeability Measurement of Unconventional Gas Reservoirs: Transport in Porous Media, 120 (3): 495-514.
Ferronato, M., Gambolati, G., Teatini, P., and Baù, D., 2006. Stochastic poromechanical modeling of anthropogenic land subsidence: International Journal of Solids and Structures, 43 (11): 3324-3336.
Hajian, A., Zomorrodian, H., Styles, P., 2012. Simultaneous estimation of shape factor and depth of subsurface cavities from residual gravity anomalies using feed-forward back-propagation neural networks: Acta Geophysica, 60 (4): 1043-1075.
Hassan, A., Sanuade, O. A., and Olaseeni, O. G., 2021. Prediction of physico-mechanical properties of intact rocks using artificial neural network: Acta Geophysica, 69 (5):1769-1788.
Horne, R. N., 1990. Modern Well Test Analysis: A Computer-Aided Approach. Jalalh, A. A., 2006a. Compressibility of porous rocks: Part I. Measurements of Hungarian reservoir rock samples: Acta Geophysica, 54 (3): 319-332.
Jalalh, A. A., 2006b. Compressibility of porous rocks: Part II. New relationships: Acta Geophysica, v. 54 (4): 399-412.
Jia, W., Zong, Z., and Lan, T., 2023. Elastic impedance inversion incorporating fusion initial model and kernel Fisher discriminant analysis approach: Journal of Petroleum Science and Engineering, 220:111235.
Karimpouli, S., Kadyrov, R., Siegert, M., Saenger, E. H., 2023. Applicability of 2D algorithms for 3D characterization in digital rocks physics: an example of a machine learning-based super resolution image generation: Acta Geophysica.
Levenberg, K., 1944. A Method for the Solution of Certain Non – Linear Problems in Least Squares: Quarterly of Applied Mathematics, 2: 164-168.
Marquardt, D. W., 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters: Journal of the Society for Industrial and Applied Mathematics, 11 (2): 431-441. Geopersia 2025, 15(1): 1-13 13
Mehrabi, H., Karami, F., Fakhar-Shahreza, N., Honarmand, J., 2023. Pore-Type Characterization and Reservoir Zonation of the Sarvak Formation in the Abadan Plain, Zagros Basin, Iran: Minerals, v. 13 (12): 1464.
Møller, M. F., 1993. A scaled conjugate gradient algorithm for fast supervised learning: Neural Networks, 6 (4): 525-533.
Moore, W. R., Ma, Y. Z., Urdea, J., Bratton, T., Ma, Y. Z., and La Pointe, P. R., 2011. Uncertainty Analysis in Well-Log and Petrophysical Interpretations, Uncertainty Analysis and Reservoir Modeling: Developing and Managing Assets in an Uncertain World, Volume 96, American Association of Petroleum Geologists, p. 0.
Moosavi, S. A., Bakhtiari, H. A., Honarmand, J., 2022. Estimation of Pore Volume Compressibility in Carbonate Reservoir Rocks Based on a Classification: Geotechnical and Geological Engineering, 40 (6): 3225-3244.
Puskarczyk, E., 2019. Artificial neural networks as a tool for pattern recognition and electrofacies analysis in Polish palaeozoic shale gas formations: Acta Geophysica, 67 (6):1991-2003.
Rahimpour-Bonab, H., Mehrabi, H., Navidtalab, A., and Izadi-Mazidi, E., 2012. Flow Unit Distribution and Reservoir Modelling in Cretaceous Carbonates of the Sarvak Formation, Abteymour Oilfield, Dezful Embayment, SW Iran: Journal of Petroleum Geology, 35 (3): 213-236.
Ramadasan, D., Chevaldonné, M., Chateau, T., 2017. LMA: A generic and efficient implementation of the Levenberg–Marquardt Algorithm: Software: Practice and Experience, 47 (11): 1707-1727.
Rikhtegarzadeh, M., Vaziri, S. H., Aleali, M., Bakhtiar, H. A., Jahani, D., 2017. Microbiostratigraphy, Microfacies and Depositional Environment of the Sarvak and Ilam Formations in the Gachsaran Oilfield, southwest Iran: Micropaleontology, 63 (6): 413-428.
Sabouhi, M., Moussavi-Harami, R., Kadkhodaie, A., Rezaee, P., Jalali, M., 2022. A qualitative- quantitative approach for studying the impact of facies and diagenesis control on the rudist biostrome of the Sarvak formation, Abadan plain, SW Iran: Journal of Petroleum Science and Engineering, 212:110245.
Sahai, S. K., Soofi, K. A., 2006. Use of Simple 2-D Filters to Reduce Footprint Noise in Seismic Data:Geohorizons, p. 14-17.
Schleicher, J., Tygel, M., and Hubral, P., 2007. Seismic True-Amplitude Imaging, Society ofExploration Geophysicists, Seismic True-Amplitude Imaging.
Sharifigaliuk, H., Mahmood, S. M., Ahmad, M., Rezaee, R., 2021. Use of Outcrop as Substitute for Subsurface Shale: Current Understanding of Similarities, Discrepancies, and Associated Challenges: Energy & Fuels, 35 (11): 9151-9164.
Soares, L., Ribeiro, T., Alves, F., Pereira, M. J., 1996. Determination of Horizontal Permeability Through a Probability Neural Network Approach, in Proceedings Abu Dhabi International Petroleum Exhibition and Conference, Volume All Days: SPE-36266-MS.
Sun, K., Dong, L., 2022. A new development algorithm for permeability prediction: A new milestone:Frontiers in Ecology and Evolution, v. 10.
Tanko, A., Bello, A., 2020. Modeling of Pore Pressure using Artificial Neural Networks: Oil & Gas Research, 6 (1): p. 4.
Wu, X., Hale, D., 2016. Automatically interpreting all faults, unconformities, and horizons from 3D seismic images: Interpretation, 4 (2): T227-T237.
Wu, Z., Zhang, K., Wang, L., Liu, W., He, Y., Li, Q., Li, Y., 2023. Experimental Study on the Evolution of Compressibility and Gas Permeability of Sediments after Hydrate Decomposition under Effective Stress: Energy & Fuels, 37(2): 1033-1043.
Zhao, Y., Liu, T., Lin, B., Sun, Y., 2021. Evaluation of Compressibility of Multiscale Pore–Fractures in Fractured Low-Rank Coals by Low-Field Nuclear Magnetic Resonance: Energy & Fuels, 35 (16): 13133-13143