Miocene miospores in the Upper Red Formation, Zanjan, northwestern Iran

Document Type : Research Paper

Authors

1 Department of Soft Rock Geology, School of Geology, College of Science, University of Tehran, Tehran 1417614411, IR Iran

2 Department of Geology, University of Zanjan, Zanjan, IR Iran

Abstract

Miocene miospores in the Upper Red Formation, Zanjan, northwestern Iran

Abstract

The Upper Red Formation has extensive outcrops in the southern and western parts of the Zanjan province, northwestern Iran. Here, we studied a sequence of lowermost part of this formation near Mehr-Abad village, northwestern Zanjan. Lithostratigraphy, sedimentology and ichnology of the URF have been studied in recent decades but palynology of this formation has not been investigated. This article is a preliminary report of miospores. The palynofloras comprise thirty species including three algae spores (in three genera), seven fern species (in seven genera), various type of gymnosperm (thirteen species designated to nine genera), and angiosperm pollen species (seven species designated to six genera); for example, Botryococcus sp., Closteritetrapidites magnus, and Diagonalites diagonalis of algal spores; Echinatisporis muelleri, Magnastriatites sp. cf. M. grandiosus, and Polyapodiaceoisporites potoniei of fern; Cathayapollis scheuringii, Cedripites sp., Ephedripites tertiarius, Pinuspollenites lobatus, P. minimus, Cupressacites spp., Tsugapollenites spp. of gymnosperm, and Acidanthera brevicollis, Calliandra spp., Fagopsis longifolia, Monoporopollenites sp., and Retitricolporites sp. of angiosperm evidenced herein. Moreover, botanical affinity of miospores considered. Therefore, Botryococcaceae/ Dictyosphaeriaceae, Closteriaceae, Zygnemataceae (algae); Marattiaceae, Pteridaceae, Polypodiaceae (fern); Cupressaceae, Ephedraceae, Pinaceae (gymnosperm), and Fagaceae, Fabaceae, Iridaceae, and Poaceae (angiosperm) identified.

Keywords: Miocene, Upper Red Formation, spore, pollen, Zanjan, NW Iran.

Keywords

Main Subjects


Article Title [Persian]

_

Abaie., I., Ansari, H., Badakhshan, A., Jaafari, A., 1964. History and development of the Alborz and Sarajeh fields of central Iran. Bulletin of Iranian Petroleum Institute, 15: 561-574.
Abbassi, N., 2005. Trace fossil of a take-off of the Miocene birds in the Upper Red Formation sediments, western of Mushampa village, northwest Zanjan. Journal of Science, University of Tehran, 3(1): 1- 20. (In Persian)
Abbassi, N., 2022. Miocene Wildlife of Zanjan, NW Iran. University of Zanjan Press, Zanjan, 303 p. Geopersia 2024, 14(1): 199-212 209
Abbassi, N., Hoshyar, M., Lucas, S.G., Esmail, F., 2021. Extensive vertebrate track-site from the Upper Red Formation (middle-late Miocene), west Zanjan, northwestern Iran. Fossil Record, 24: 101-116.
Abbassi, N., Shaker, S., 2005. Miocene Vertebrate Footprints from the Upper Red Formation, Mushampa Area, Zanjan Province, 55: 76-89. (in Persian)
Aboulaïch, N., Bouziane, H., El Kadiri, M. & Riadi, H., 2008. Male phenology and pollen production of Cupressus sempervirens in Tetouan (Morocco). Grana, 47 (2): 130-138.
Amini, A., 1997. Provenance and Depositional Environment of the Upper Red Formation, Central Zone Iran. Ph.D Thesis, unpublished, The University of Manchester.
Amini, A., 2001. Red Colouring of the Upper Red Formation in central part of its basin, central zone, Iran. Journal of Science, Islamic Republic of Iran, 12 (2): 145-156.
Antonio-Domingues, H., da Silva Corrêa, A.M., Teixeira de Queiroz, R., Borges Bitar, N.M., 2018. Pollen morphology of some Fabaceae species from Patos de Minas, Minas Gerais State, Brazil. Hoehnea, 45(1): 103-114.
Ballato, P., Cifelli, F., Heidarzadeh, G., Ghassemi, M.R., Wickert, A.D., Hassanzadeh, J., Dupont-Nivet, G., Balling, P., Sudo, M., Zeilinger, G., Schmitt, A.K., Mattei, M., Strecker, M.R., 2016. Tectonosedimentary evolution of the northern Iranian Plateau: insights from middle-late Miocene forelandbasin deposits. Basin Research, 29: 417-446.
Ballato, P., Nowaczyk, N.R., Landgraf, A., Strecker, M.R., Friedrich, A., Tabatabaei, S. H. (2008). Tectonic control on sedimentary facies pattern and sediment accumulation rates in the Miocene foreland basin of the southern Alborz mountains, northern Iran. Tectonics, 27: 1-20.
Bentham, G., 1865. Genera Plantarum: auctoribus. In: Bentham, G., Hooker, J.D. (Eds.), Genera Plantarum, vol. I, part 2. London Taylor and Francis, Ltd. p. 364.
Bouchal, J.M., 2019. The middle Miocene palynofloras of the Salihpaşalar lignite mine (Yatağan Basin, southwest Anatolia): environmental characterization and comparison with palynofloras from adjacent basins. Palaeobiodiversity and Palaeoenvironments, 99: 591-636.
Bouchal, J.M., Denk, T., 2020. Low taxonomic resolution of papillate Cupressaceae pollen (former Taxodiaceae) impairs their applicability for palaeo-habitat reconstruction. Grana, 59 (1): 71-93.
Bouchal, J.M., Zetter, R., Denk, T., 2016. Pollen and spores of the uppermost Eocene Florissant Formation, Colorado: a combined light and scanning electron microscopy study. Grana, 55(3): 1-67.
Carpenter, R.J., Jordan, G.J., 1997. Early Tertiary Macrofossils of Proteaceae from Tasmania. Australian Systematic Botany, 10(4): 533 - 563.
Carpenter, R.J., Macphail, M.K., Jordan, G.J., Hill, R.S., 2015. Fossil evidence for open, Proteaceaedominated heathlands and fire in the Late Cretaceous of Australia. American Journal of Botany, 102(12): 2092 - 2107.
Cronquist, A., 1981. An integrated system of classification of flowering plants. Columbia University Press, New York, 1262 p.
Da Cunha Correia, G., de Paula Sá, N., Corrêa Santos, D.M., 2019. Inventário dos esporos de Pteridófitas da Formaçᾶo Solimões, Bacia do Solimões, Amazônia, Brasil Centro Universitário Sᾶo José, Curso de Ciências Biológicas, 1-32.
D’Apolito, C., Jaramillo, C., Harrington, G., 2021. Miocene Palynology of the Solimões Formation (Well 1-AS-105-AM), Western Brazilian Amazonia. Smithsonian Institution Scholarly Press, Washington, D.C., 134p.
Darvishzadeh, A., 1991. Geology of Iran. Danesh-e-Emrouz Publication, 910p. (in Persian)
Dodson, J., Macphail, M.K., 2004. Palynological evidence for aridity events and vegetation change during the Middle Pliocene, a warm period in Southwestern Australia. Global and Planetary Change, 41(3-4): 285-307.
El-Ghazali, G.E.B., Satti, A.M., Tsuji, S.I., 1997. Intra-specific pollen polymorphism in Mimosa pigra L. (Mimosoideae). Grana, 36: 279-83.
Engler, A., 1876. Beiträge zur Kenntnis der Antheren- bildung der Metaspermen. Jahrbücher für wissenschaftliche Botanik, 10: 275-313.
Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler’s and Chaney’s Arcto- Tertiary hypotheses. Plant Systematic Evolutionary, 301: 809-832.
Fritzsche, C.J., 1832. Beiträge zur Kenntniss des Pollen. 1: 48. Berlin, Stettin und Elbing, Nicolai`sche Buchhandlung, 48p.
Gansser, A., 1955. New aspects of the geology in Central Iran. Proceedings of the Fourth World Geopersia 2024, 14(1): 199-212 210 Petroleum Congress, Rome, Italy.
Germeraad, J.H., Hopping, C.A., Muller, J., 1968. Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology, 6: 189-348.
Gortemaker, R.E., 1986. A method to identify pollen of some recent and fossil species of Fagus L. (Fagaceae). Review of Palaeobotany and Palynology, 47(3-4): 263-292.
Gosling, W.D., Miller, C.S., Livingstone, D.A., 2013. Atlas of the tropical West African pollen flora. Review of Palaeobotany and Palynology, 199: 1-135.
Gravendtck, J., Coiffard, C., Bachelier, J.B., Kürschner, W., 2023. Re-evaluation of Cerebropollenites thiergartii Eberh. Schulz 1967 and related taxa: priority of Sciadopityspollenites and nomenclatural novelties. Grana, 62(1): 1-47.
Griener, K.W., Warny, S., 2015. Nothofagus pollen grain size as a proxy for long-term climate change: An applied study on Eocene, Oligocene, and Miocene sediments from Antarctica. Review of Palaeobotany and Palynology, 221: 138-143.
Grímsson, F., Zetter, R., Grimm, G.V., Pedersen, G.K., Pedersen, A.K., Denk, T., 2015. Fagaceae pollen from the early Cenozoic of West Greenland: Revisiting Engler’s and Chaney’s Arcto-Tertiary hypotheses. Plant Systematics and Evolution 301: 809-832. doi:10.1007/s00606-014-1118-5.
Guinet, Ph., 1981a. Comparative account of pollen characters in the Leguminosae. In: R.M. Polhill and P.H. Raven (Eds.), Advances in Legume Systematics. Part 2: 789-99.
Guinet, Ph., 1981b. Mimosoideae: the characters of their pollen grains. In: R.M. Polhill and P.H. Raven (Eds.), Advances in Legume Systematics. Part 2: 835-55.
Guinet, Ph., Ferguson, I.K., 1989. Structure, evolution and biology of pollen Leguminosae. In: C.H. Stirton and J.L. Zarucchi (Eds.), Advances in Legume Biology.
Hequet, V., 2003. Pollen Atalas of Bat-Pollinated Plants of Central French Guiana. The New York Botanical Garden. Master Thesis.
Hofmann, C.C, Kodrul, T.M., Liu, X., Jin, J., 2019. Scanning electron microscopy investigations of middle to late Eocene pollen from the Changchang Basin (Hainan Island, South China) - Insights into the paleobiogeography and fossil history of Juglans, Fagus, Lagerstroemia, Mortoniodendron, Cornus, Nyssa, Symplocos and some Icacinaceae in SE Asia. Review of Palaeobotany and Palynology, 265: 41-61.
Ikegwuonu, O.N., Umeji, O.P., 2016. Palynological age and palaeoenvironment of deposition of Mid- Cenozoic sediments around Umuahia, Niger delta basin, southeastern Nigeria. Journal of African Earth Sciences, 117: 160-170.
Jaramillo, C.A., Bayona, G., Pardo-Trujillo, A., Harrington, G.J., Mora, G., Rueda, M., Torres, V., 2007. The palynology of the Cerrejon Formation (Upper Paleocene) of northern Colombia. Palynology, 37: 153-189.
Lescuyer, J.L., Riou, R., 1976. Géologie de la région de Mianeh (Azerbaijan): contribution àl’ étude du volcanisme tertiaire de l’Iran. Volcanologie. Université Scientifique et Médicale de Grenoble. Français.
Liu, Y-S., Wang, W.-M., Arata, M., 1998. China's Beech Forests in the Pre-Quaternary. Mitteilungen aus dem Museum für Naturkunde, Geowissenschaftliche Reihe, l: 151-166.
Lotfi, M., 2001. Geological map of Mahneshan, scale 1:100000, Geological Survey of Iran, Tehran, Iran. (in Persian)
Mack, C.L., Milne, L.A., 2016. New Banksieaeidites species and pollen morphology in Banksia. Australian Systematic Botany, 29: 303-323.
Mandaokar, B.D., Mukherjee, D., 2012. Palynological investigation of Early Miocene sediments exposed at Panruti, Cuddalore District, Tamil Nadu, India. International Journal of Geology, Earth and Environmental Sciences, 2 (3): 157-175.
Miao, Y., Warny, S., Clift, P.D., Liu, C., Gregory, M., 2017. Evidence of continuous Asian summer monsoon weakening as a response to global cooling over the last 8 Ma. Gondwana Research, 52: 48- 58.
Mir Hosseini, S.A., Nabatian G., Zohdi, A., Salsani, A., 2021. Lithostratigraphy, petrography, and geochemistry of sandstone in the middle part of the Upper Red Formation, Ghezeljeh area, NW Zanjan. Journal of Stratigraphy and Sedimentology Researches, University of Isfahan, 81(4): 87-107. (in Persian)
Mohl, M., 1835. Sur la structure et les formes dés grains de pollen. Annales des Sciences Naturelles; Geopersia 2024, 14(1): 199-212 211 Botanique Série 2-3, 148-81; 220-36; 304-47.
Mueller, V.F., 1887-1888. Iconography of Australian species of Acacia and cognate genera. Decades IXIII. Melbourne.
Nazish, M., Althobaiti, A.T., 2022. Palyno-Morphological Characteristics as a Systematic Approach in the Identification of Halophytic Poaceae Species from a Saline Environment. Plants, 11 (2618): 1- 18. Doi.org/10.3390/plants11192618.
NIOC (National Iranian Oil Company) 1959. Geological map of Iran, 1:2500000, National Iranian Oil Company publication, Tehran.
Onstein, R.E., Jordan, G.J., Sauquet, H., Weston, P.H., Bouchenak-Khelladi, Y., Carpenter, R.J., Linder, H.P., 2016. Evolutionary radiations of Proteaceae are triggered by the interaction between traits and climates in open habitats. Global Ecology and Biogeography, 1-13. doi.org/10.1111/geb.12481.
Parra, F.J., Navarrete, R.E., di Pasquo, M.M., Roddaz, M., Calderón, Y., Baby, P., 2021. Neogene palynostratigraphic zonation of the Maranon Basin, Western Amazonia, Peru. Palynology, 44(4): 675-695.
Pemberton, S.G., MacEachern, J.A., Frey R.W., 1994. Trace fossil models: environmental and allostratigraphic significance. In: Walker, R.G., James, N.P. (Eds.), Facies models: Response to sea level change. Geology Association of Canada, second reprint, 47-72.
Phipps, D., Playford, G., 1984. Laboratory techniques for extraction of palynomorphs from sediments. Department of Geology, University of Queensland 11: 1-29.
Pocknall, D.T., 1985. Palynology of Waikato Coal Measures (Late Eocene-Late Oligocene) from the Raglan area, North Island, New Zealand, New Zealand Journal of Geology and Geophysics, 28(2): 329-349.  doi:10.1080/00288306.1985.10422231.
Rahimzadeh, F., 1994. Oligocene, Miocene, Pliocene, In Houshmandzadeh, A. (Ed.), Geology of Iran, Geological Survey of Iran publication, Tehran. No. 12, 311 p. [in Persian].
Rezaie, K., Foroughi Shadbash, S., Asadi, A., 2015. Petrography and geochemistry of the Upper Red Formation in Hassan-Abad section, southwestern Tehran. Applied Sedimentology, 3 (6): 43-56. (in Persian)
Rosanoff, S., 1865. Zur Kenntniss des Baues und Entwicklung sgeschichte des Pollens der Mimosaceae. Jahrbücher für wissenschaftliche Botanik, 4: 441-450.
Rull, V., 2001. A morphometric study of early Miocene Mauritiidites from Northern South America. Grana, 40(3): 163-167.
Salamanca-Villegas, van Soelen, E.E., Teunissen van Manen, M.L., Flantua, S.G.A., Ventura Santos, R., Roddaz, M., Dantas, E.L., van Loon, E., Sinninghe Damsté, J.S., Kim, J.H., Hoorn, C., 2016. Amazon forest dynamics under changing abiotic conditions in the early Miocene of Colombian Amazonia. Journal of Biogeography, 1-40.
Shang, Y., Zavada, M.S., 2003. The ultrastructure of Cerebropollenites from the Jurassic and Cretaceous of Asia. Grana, 42 (2): 102-107.
Smith, C., 2016. An Early Paleogene Palynological Assemblage from the Sabrina Coast, East Antarctica: New Species and Implications for Depositional History, University of South Florida Master’s thesis.
Stöcklin, J., Setudehnia, A., 1991. Stratigraphic Lexicon of Iran. Tehran: Geological Survey of Iran. Report no. 18, 379 p.
Stöcklin, J., Eftekhar-Nezhad, J., 1969. Explanatory text of the Zanjan Quadrangle map. Geological Survey of Iran, report no D4, 61pp. (with 1:250000 geological map).
Tantawy, M.E, Khalifa, S.F., Hamed, K.A., Elazab, H.M., 2005. Palynological Study on Some Taxa of Mimosoideae (Leguminosae). International Journal of Agriculture and Biology 7(6): 857-868.
Truswell, E.M., Macphail, M.K., 2009. Polar forests on the edge of extinction: what does the fossil spore and pollen evidence from East Antarctica say? Australian Systematic Botany, 22: 57-106.
William D. Gosling, W.D., Miller, C.S., Livingstone, D.A., 2013. Atlas of the tropical West African pollen flora. Review of Palaeobotany and Palynology, 199: 1-135.
Worobiec, E., 2009. Middle Miocene palynoflora of the Legnica lignite deposit complex, Lower Silesia, Poland. Acta Palaeobotanica, 49(1): 5-133.
Worobiec, E., 2014. Fossil zygospores of Zygnemataceae and other microremains of freshwater algae from two Miocene palaeosinkholes in the Opole region, SW Poland. Acta Palaeobotanica, 54(1): 113-157. Geopersia 2024, 14(1): 199-212 212
Worobiec, E., Widera, M., Worobiec, G., Kurdziel, B., 2021. Middle Miocene Palynoflora from the Adamów Lignite Deposit, Central Poland. Palynology, 45(1): 59-71. Appendix A; Systematic Algae Botryococcus sp. (Plate 1, Fig. 1) Closteritetrapidites magnus Krutzsch & Pacltová 1990 (Plate 1, Fig. 2) Diagonalites diagonalis Krutzsch & Pacltová 1990 (Plate 1, Fig. 3) Spore Baculatisporites primarius (Wolf 1934) Thompson & Pflug 1953 (Plate 1, Figs. 9, 10)
Echinatisporis muelleri Krutzsch 1967 (Plate 1, Fig. 5) Echinosporis sp. cf. E. densiechinatus D’Apolito et al. 2021 (Plate 1, Figs. 8, 11) Echinosporis sp. (Plate 1, Fig. 14) Gleicheniidites sp. (Plate 1, Fig. 13) Magnastriatites sp. cf. M. grandiosus (Kedves & Sole de Porta 1963) Dueñas 1980 (Plate 1, Fig. 4) Polyapodiaceoisporites potoniei Kedves 1961 (Plate 1, Figs. 6, 7) Gymnosperm Pollen Cathayapollis scheuringii (Sivak) Ziembinska-Tworzydło 2002 (Plate 3, Fig. 1) Cedripites sp. (Plate 2, Fig. 1)
Cupressacites sp. A (Plate 3, Fig. 3)
Cupressacites sp. (Plate 3, Figs. 7, 8)
Ephedripites (Distachyapites) tertiarius Krutzsch 1970 (Plate 3, Figs. 15, 16)
Pinuspollenites subgenus Pinus sp. (Plate 2, Figs. 4, 7)
Pinuspollenites subgenus Strobus sp. (Plate 2, Figs. 11, 12)
Pinuspollenites sp. cf. P. lobatus (Plate 3, Fig. 4)
Pinuspollenites spp. (Plate 2, Figs. 2, 3, 5, 6)
Pseudolaterix sp. (Plate 2, Figs. 8, 9)
Tsugapollenites igniculus Thiergart 1938 emend. Gravendyck et al. 2023 (Plate 3, fig. 2)
Tsugapollenites spp. (Plate 3, Figs. 5, 14)
Angiosperm pollen
Acidanthera brevicollis Baker 1876 (Plate 1, Fig. 12)
Calliandra spp. (Plate 4, Figs. 1-4)
Diospyros sp. (Plate 4, Fig. 1)
Fagopsis longifolia (Lesquereux 1872) Hollick & Torreya 1909 (Plate 3, Fig. 12)
Monoporopollenites sp. (Plate 3, Figs. 10, 11)
Retitricolporites sp. (Plate 4, Figs. 6-8)