Study of the microstructures and mineralogical phases in the fault gouge and their relationship with the fault seismicity, a case study of the Astaneh fault

Document Type : Research Paper

Authors

Department of geology, Faculty of science, Ferdowsi University of Mashhad, Iran

Abstract

Abstract:

The Astaneh Fault is one of the active and seismic faults in the Shahroud sinistral fault system. Fault gouges can be seen in a completely pristine and unchanged form in the portions of this fault that have affected the carbonate rocks. Fault gouges are the direct product of lithology and are formed as a result of the fault slip from the host rocks. Studying these rocks for type, composition, mineralogical phases and structure can provide results on how the fault slip and gouge process occurs. The result of a seismic slip in faults, and especially in gouges, are different types of deformations, such as mineralogical and compositional deformations, depending on the conditions of their formation. From this deformation model, we can mention the thermal decomposition of calcite and dolomite, as well as the presence of siderite in gouges. In this article, by studying the combined [aggregated] microstructures in the Astaneh fault gouge, their relationship with seismic slip has been investigated. According to previous research, the Astaneh Fault is certainly a seismic fault. The presence of the resulting thermal decomposition of calcite and dolomite (calcium and magnesium oxide or periclase) and the welding of particles due to heat may be the key to seismic slip in this fault.

Keywords

Main Subjects


Article Title [Persian]

-

Agosta, F., Prasad, M., Aydin, A., 2007. Physical properties of carbonate fault rocks, Fucino basin, central Italy: implications for fault seal in platform carbonates. Journal of Geofluids, 7: 19-32.
Agosta, F., Kirschner, D.L., 2003. Fluid conduits in carbonate-hosted seismogenic normal faults of central Italy. Journal of Geophysical Research, 108, 2221. doi:10.1029/2002JB002013.
Arzhannikova, A. V., Arzhannikov, S. G., Jolivet, M., Vassalo. R., Chauvet. A., 2011. Morphotectonic analysis of Pliocene-Quaternary deformations in the southeast of the Eastern Sayan, Geotectonics, 45: 142-156.
Babaie, H.A., Hadizadeh, J., Babaei, A., 1995. Self-similar cataclasis in the Saltville thrust zone, Knoxville, Tennessee. Journal of Geophysical Research, 100: 18075- 18084.
Barnhoorn, A., Bystricky, M., Burlini, L., Kunze, K., 2004. The role of recrystallization on the deformation behavior of calcite rocks: large strain torsion experiments on Carrara marble. Journal of Structural Geology, 26: 885-903.
Billi, A., Di Toro, G., 2008. Fault-related carbonate rocks and earthquake indicators: recent advances and future trends. In: Landowe, S.J., Hammler, G.M. (Eds.), Structural Geology: New Research. Nova Science Publishers, Hauppage, NY, USA, ISBN 978-1-60456-827-1.
Bos,B., Peach,C.J., Spiers,C.J., 2000. Frictional-viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution. Journal of Tectonophysics Volume 327, Issues 3-4: 173-194.
Boutareaud, S., Calugaru, D.G.,Han,.R., Fabbri, O., Mizoguchi, K., Tsutsumi, A., Shimamoto, T., 2008. Clay-clast aggregates: A new textural evidence for seismic fault sliding? Geophysical Research Letters Solid Earth, Volume 35, Issue 5.
Boullier, A‐M., Yeh, E‐C., Boutareaud, S., Song, S‐R., Tsai, C‐H., 2009. Microscale anatomy of the 1999 Chi‐Chi earthquake fault zone. Journal of Geochemistry Geophysics Geosystems, 10(3): 1-25.
Burkhard, M., 1993. Calcite-twins, their geometry, appearance and significance as stress-strain markers and indicators of stress regime: a review. Journal of Structural Geology, 15: 351-368.
Caine, J. S., Evans, J. P., Forster, C. B., 1996. Fault zone architecture and permeability structure. Geology, 24: 1025-1028.
Chester, F.M., Friedman, M., Logan, J.M., 1985. Foliated cataclasites, Tectonophysics, 111: 139-146.
Cladouhos, T.T., 1999. Shape preferred orientations of survivor grains in fault gouge. Journal of Structural Geology, 21, (4):419-436.
Collettini, C., Viti, C., Tesei, T., Mollo, S., 2013. Thermal decomposition along natural carbonate faults during earthquakes. Journal of Geology, 41(8): 927-930.
Collettini, C., Holsworth, R.E., Smith, S.A.F., 2009b. Fault zone structure and deformation processes along an exhumed low-angle normal fault. Implications for seismic behavior. In: Fukuyama, E. (Ed.), Fault Zone Properties and Earthquake Rupture Dynamics. International Geophysics Series, 94: 69-85.
Collettini, C., Niemeijer, A., Viti, C., Marone, C. J., 2009a. Fault zone fabric and fault weakness. Nature, 462,  907-910.Holdsworth, R. E. 2004. Weak faults - Rotten cores. Science, 303: 181-182.
Collettini, C.and Holdsworth, R. E., 2004. Fault zone weakening and character of slip along low-angle normal faults: insights from the Zuccale fault, Elba, Italy. Journal of the Geological Society. 161 (6): 1039-1052. Geopersia 2024, 14(1): 165-182 181
Cowan;D.S., Cladouhos, T.T., Morgan,J.K., 2003. Structural geology and kinematic history of rocks formed along low-angle normal faults, Death Valley, California. GSA Bulletin (2003) 115 (10): 1230-1248.
De Bresser, J.H.P., Spiers, C.J., 1993. Slip systems in calcite single crystals deformed at 300-800 C. Journal of Geophysical Research, 98: 6397-6409.
Ferrill, D.A., Morris, A.P., 2008. Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system, Texas. AAPG Bulletin, 92: 359-380.
Ghisetti, F., Kirschner, D.L., Vezzani, L., Agosta, F., 2001. Stable isotope evidence for contrasting paleofluid circulation in thrust faults and normal faults of the central Apennines, Italy. Journal of Geophysical Research, 106: 8811-8826.
Graham, B., Antonelli, M., Aydin, A., 2003. Formation and growth of normal faults in carbonates within a compressive environment. Journal of Geology, 31: 11-14.
Hadizadeh, J., 1994. Interaction of cataclasis and pressure solution in a low temperature carbonate shear zone. Pure and Applied Geophysics, 143: 255-280.
Han, R., Hirose, T., Shimamoto, T., 2010. Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. Journal of Geophysical Research, 115: 1-23.
Han, R., Shimamoto, T., Ando, J., Ree, J., 2007a. Seismic slip record in carbonate bearing fault zones: an insight from high-velocity friction experiments on siderite gouge. Journal of Geology, 35: 1131-1134.
Hayman, N. W., Housen, B.A., Cladouhos, T.T., Livi, K., 2004, Magnetic and clast fabrics as measurements of grain-scale processes within the Death Valley shallow crustal detachment faults. JOURNAL OF GEOPHYSICAL RESEARCH, 109, B05409, doi: 10.1029/2003JB002902, 2004.
Hollingsworth, J., 2007- Active Tectonics of NE Iran, A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge, (phd_thesis).
Hollingsworth, J., Nazari, H., Ritz, J. F., Salamati, R., Talebian, M., Bahroudi, A., Walker, R.T., Rizza, M., Jackson, J., 2010. Active tectonics of the east Alborz Mountains, NE Iran: Rupture of the left lateral Astaneh fault system during the great 856 A.D. Qumis earthquake. Journal of Geophysical Research, 115: 1-19. https://geophysics.ut.ac.ir/ Iranian seismological center (IRSC) HYPERLINK "http://irsc.ut.ac.ir/" irsc.ut.ac.ir.
Imber, J., Holdsworth, R. E., Butler, C. A., Strachan, R. A., 2001. A reappraisal of the Sibson Scholz fault zone model: The nature of the frictional to viscous (‘brittle-ductile’) transition along a longlived crustal-scale fault, Outer Hebrides, Scotland. Tectonics, 20: 601-624.
Jackson, J., Priestley, K., Allen, M., Berberian, M., 2002. Active tectonics of the South Caspian Basin. Geophysical Journal International, 148: 214-245.
Jefferies, S. P., Holdsworth, R. E., Shimamoto, T., Takagi, H., Lloyd, G. E., Spiers, C. J., 2006. Origin and mechanical significance of foliated cataclastic rocks in the cores of crustal-scale faults: examples from the Median Tectonic Line, Japan. Journal of Geophysical Research-Soli Earth, 111, B12303, doi: 12310.11029/12005JB004205.
Kennedy, L.A., Logan, J.M., 1997. The role of veining and dissolution in the evolution of fine-grained mylonites. Journal of Structural Geology, 19: 785-797.
Kim, Y.S., Peacock, D.C.P., Sanderson, D.J., 2003. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25: 793-812.
Knipe, R. J., 1989. Deformation mechanisms -recognition from natural tectonites. Journal of Structural Geology, 11: 127-146.
Kuo, L-W., Song, S-R., Huang, L., Yeh, E-C., and Chen, H-F., 2011. Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan. Journal of Tectonophysics 502: 315-327.
Liana-Funez, S., Rutter, E.H., 2005. Distribution of non-plane strain in experimental compression of short cylinders of Solnhofen limestone. Journal of Structural Geology, 27: 1205-1216.
Moore, D. E., Rymer, M. J., 2007. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature, 448: 795-797.
Mortand, K., Woodcock, N.H., 2008. Quantifying fault breccia geometry: dent fault, NW England. Journal of Structural Geology, 30: 701-709.
Micarelli, L., Benedicto, A., Wibberley, C.A.J., 2006. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. Journal of Structural Geology, 28: 1214-1227.
Nazari, H., 2006. Analyse de la tectonique récente et active dans l'Alborz Central et la région de Téhéran: Approche morphotectonique et paleoseismologique. Science de la terre et de l'eau. Ph.D. thesis. 182 Hajiannezhad & Rahimi
University of Montpellier2, pp: 247 (in France).
Nemati, M., Hatzfeld, D., Gheitanchi, M.R., Sadidkhouy, A., Mirzaei, N., and Moradi, A., 2012. Investigation of seismicity of the Astaneh Fault in the East Alborz. Journal of Earth and Space Physics, 37(2): 1-16.
Newman, J., Mitra, G., 1994. Fluid-influenced deformation and recrystallization of dolomite at low temperatures along a natural fault zone, Mountain City window, Tennessee. Geological Society of America Bulletin, 106: 1267-1280.
Pieri, M., Burlini, L., Kunze, K., Stretton, I., Olgaard, D.L., 2001a. Rheological and microstructural evolution of Carrara marble with high shear strain: results from high temperature torsion experiments. Journal of Structural Geology, 23: 1393-1413.
Rahimi, B., 2002. Structural Study of Alborz Range in North Damghan, Ph.D. thesis. University of the shahid Beheshti, Iran, pp.232 (in Persian).
Rizza, M., Mahan, S., Ritz, J-F., Nazari, H., Hollingsworth, J., Salamati, R., 2011. Using luminescence dating of coarse matrix material to estimate the slip rate of the Astaneh fault, Iran. Quaternary Geochronology, 6:390-406.
Reinen, L. A., 2000. Seismic and Aseismic Slip Indicators in Serpentinite Gouge. Geology 28 (2): 135- 138.
Salvini, F., Billi, A., Wise, D.U., 1999. Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata fault zone. Journal of Structural Geology, 21: 1731-1749.
Scholz, C. H., 2002. The Mechanics of Earthquakes and Faulting. 2nd edn. Cambridge University Press, Cambridge.
Shokri, M., Ghorashi, M., Nazari, H., Salamati, R., Talebian, M., Ritz,J.F., Mohammad khani, H., Shahpasand zadeh,M., 2008. Preliminary Results of Paleoseismologic Trenching along the Astaneh Fault. Journal of Earth Sciences, 18(number 70): 84-93 in Persian.
Sibson, R. H., 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, London, 133: 191-213.
Smith, S.A.F., Di Toro, G., Kim, S., Ree, J-H., Nielsen, S., Billi, A., Spiess, R., 2013. Coseismic recrystallization during shallow earthquake slip. Journal of Geology, 41: 63-66.
Smith, S.A.F., colletini, C., Holdsworth, R.E., 2008. Recognizing the seismic cycle along ancient faults: CO2-induced fluidization of breccias in the footwall of a sealing low-angle normal fault. Journal of Structural Geology, 30: 1034-1046.
Storti, F., Billi, A., Salvini, F., 2003. Particle size distributions in natural carbonate fault rocks: insights for non-self-similar cataclasis. Earth and Planetary Science Letters, 206: 173-186.
Tullis, T. E., Burgmann, R. et al., 2007. Group report: rheology of fault rocks and their surroundings. In: Handy, M. R., Hirth, G. & Hovius, N. (eds) Tectonic Faults: Agents of Change on a Dynamic Earth. MIT Press, Cambridge, MA, 183-204.
Tondi, E., 2007. Nucleation, development and petrophysical properties of faults in carbonate grainstones: evidence from the San Vito Lo Capo peninsula (Sicily, Italy). Journal of Structural Geology, 29: 614-628.
Watts, L. M., Holdsworth, R. E., Sleight, J. A., Strachan, R. A., Smith, S. A. F., 2007. The movement history and fault rock evolution of a reactivated crustal-scale strike-slip fault: the Walls Boundary Fault Zone, Shetland. Journal of the Geological Society, London, 164: 1037-1058.
Yanbao L., Lichun C., Yongkang R., Yuqiao C., 2022. Microscopic Characteristics of Fault Gouge in Minor-Surface-Rupture Faults: A Case Study in the Longmenshan Fault Zone, Eastern Tibetan ORIGINAL RESEARCH article Front. Earth Sci. Structural Geology and Tectonics Volume 10- 2022.
Yuan, R., Zhang, B., Xu, X., Lin, C., 2013. Microstructural Features and Mineralogy of clay-rick Fault Gouge at the Northern Segment of the YingxiuBeichuan Fault, China. Seismology Geol. 35 (4): 685- 700.
Zhang, B., Lin, C., and Shi, L., 2002. Microstructural Features of Fault Gouges from Tianjing-Shan- Xiangshan Fault Zone and Their Geological Implications. Sci. China Ser. D-earth Science, 45 (1):72-80.