Framboidal and spherulitic pyrite in sediment-hosted ore deposits of Iran

Document Type : Research Paper


1 School of Geology, College of Science, University of Tehran, Tehran 1417614411, Iran

2 Department of Geology, Faculty of Sciences, Tarbiat Modares University, Tehran 14115111, Iran

3 Escuela Nacional de Ciencias de la Tierra, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04150, Mexico

4 Department of Petroleum Geosciences, Faculty of Science, Soran University, Erbil, Iraqi Kurdistan, Iraq

5 Departament d’Enginyeria Minera, Industrial i TIC, Universitat Politècnica de Catalunya, Av. de les Bases de Manresa 61–73, 08242 Manresa, Spain

6 Department of Geology, Faculty of Sciences, University of Birjand, Birjand 9717434765, Iran


Framboidal pyrite is common in marine sediments and organic matter-bearing sedimentary rocks. It has also been reported in many ‘sediment-hosted ore deposits’, such as shale-hosted massive sulfide (SHMS) or clastic-dominated Zn-Pb deposits, volcanogenic massive sulfides (VMS), Irish-type Zn-Pb, sediment-hosted stratabound copper (SSC), and sandstone-hosted Pb-Zn and U, as well as in coal deposits, whereas it is absent or rare in some others (e.g., Mississippi Valley Type, MVT). Spherulitic pyrites are more common in Cambrian pyrite-rich SHMS Zn-Pb deposits, hosted in organic matter-rich black shales and siltstones. Framboid textures can be observed in other minerals as well, such as magnetite, hematite, goethite, limonite, magnesium ferrite, chalcocite, cobaltite, digenite, and arsenopyrite. However, it is possible that these non-pyrite framboids are either formed due to the oxidation of pyrite or the replacement of pyrite by other minerals. The recognition of different morphology types of pyrite framboids and spherulites and their relationship with other sulfides are useful in determining the time of formation of these ore deposits, especially in sediment-hosted Zn-Pb
mineralizations. Although framboidal pyrite usually has a sedimentary origin, in some sediment-hosted ore deposits (e.g., Koushk, Chahmir, Zarigan, Hossein-Abad, Eastern Haft-Savaran, Tiran, and Irankuh), where it occurs in association with fine-grained sphalerite and galena, and also in the hydrothermal alterations, its origin is influenced by hydrothermal fluid inputs. Whatever its origin, framboidal pyrite allows us to approach the redox conditions of the sedimentary environment, based on a detailed morphometric analysis in each (ore) facies. Suggesting an analogy with modern euxinic sedimentary
basins, the large number of framboidal pyrite indicates euxinic to anoxic conditions in the Chahmir,Koushk, Zarigan, Hossein-Abad, Eastern Haft-Savaran, and Ab-Bagh ore deposits, which is consistent with the geochemical proxies of the host rocks 


Main Subjects

Article Title [Persian]


Afzal, P., Farhadi, S., Boveiri Konari, M., Shamseddin Meigooni, M., Daneshvar Saein, L., 2022. Geochemical anomaly detection in the Irankuh District using Hybrid Machine learning technique and fractal modelling. Geopersia, 12(1): 191-199.
Aghanabati A., 1998. Major sedimentary and structural units of Iran (map). Journal of Geoscience, 7: 29-30
Berner, R.A., 1970. Sedimentary pyrite formation. American journal of science, 268(1): 1-23.
Bond, D.P., Wignall, P.B., 2010. Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin, 122 (7-8): 1265-1279.
Boveiri-Konari, M., Rastad, E., Peter, J.M., 2017. A sub-seafloor hydrothermal synsedimentary to early diagenetic origin for the Gushfil Zn-Pb-(Ag-Ba) deposit, south Esfahan, Iran. Journal of Mineralogy and Geochemistry, 194: 61-90.
Boveiri Konari, M., Rastad, E., 2018. Nature and origin of dolomitization associated with sulphide mineralization: new insights from the Tappehsorkh Zn‐Pb (‐Ag‐Ba) deposit, Irankuh Mining District, Iran. Geological Journal, 53(1): 1-21.
Calvert, S.E., Pedersen, T.F., 1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine geology, 113(1-2): 67-88. 160 Rajabi et al.
Canfield, D.E., Berner, R.A., 1987. Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimica et Cosmochimica Acta, 51(3): 645-659.
Degens, E.T., Okada, H., Honjo, S., Hathaway, J.C., 1972. Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa. Mineralium Deposita, 7, 1-12.
England, B., Ostwald, J., 1993. Framboid-derived structures in some Tasman fold belt base-metal sulphide deposits, New South Wales, Australia. Ore Geology Reviews, 7 (5): 381-412.
Formolo, M.J., Lyons, T.W., 2007. Accumulation and preservation of reworked marine pyrite beneath an oxygen-rich Devonian atmosphere: Constraints from sulfur isotopes and framboid textures. Journal of Sedimentary Research, 77 (8): 623-633.
Gadd, M.G., Layton-Matthews, D., Peter, J., Paradis, S., 2016. The world-class Howard’s Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part I: trace element compositions of pyrite record input of hydrothermal, diagenetic, and metamorphic fluids to mineralization. Mineralium Deposita, 51 (3): 319-342.
Gallego-Torres, D., Reolid, M., Nieto-Moreno, V., Martínez-Casado, F.J., 2015. Pyrite framboid size distribution as a record for relative variations in sedimentation rate: An example on the Toarcian Oceanic Anoxic Event in Southiberian Palaeomargin. Sedimentary geology, 330: 59-73.
Hoffman, D.L., Algeo, T.J., Maynard, J.B., Joachimski, M.M., Hower, J.C., Jaminski, J., 1998. Regional and stratigraphic variation in bottom water anoxia in offshore core shales of Upper Pennsylvanian cyclothems from the Eastern Midcontinent Shelf (Kansas), USA. Shales and Mudstones, 1: 243-269.
Jakobsen, R., Postma, D., 1999. Redox zoning, rates of sulfate reduction and interactions with Fereduction and methanogenesis in a shallow sandy aquifer, Rømø, Denmark. Geochimica et Cosmochimica Acta, 63(1): 137-151.
James, R.H., Elderfield, H., 1996. Chemistry of ore-forming fluids and mineral formation rates in an active hydrothermal sulfide deposit on the Mid-Atlantic Ridge. Geology, 24 (12): 1147-1150.
Jones, B., Manning, D.A., 1994. Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111-129.
Khan Mohammadi, G., Rajabi, A., Niroomand, S., Mahmoodi, P., Canet, C., Alfonso, P., 2023.
Carbonate-hosted Zn-Pb-Cu-Ba (-Ag) mineralization in the Mehdiabad deposit, Iran: new insights, new discoveries. In: Andrew, C.J., Hitzman, M.W., Stanley, G. (Eds.), Irish-type Deposits around the world. Irish Association for Economic Geology, Dublin, 545-556. DOI:
Křibek, B., 1975. The origin of framboidal pyrite as a surface effect of Sulphur grains. Mineralium Deposita, 10(4): 389-396.
Large, R.R., Bull, S.W., Cooke, D.R., McGoldrick, P.J., 1998. A genetic model for the HYC Deposit, Australia; based on regional sedimentology, geochemistry, and sulfide-sediment relationships. Economic Geology 93 (8): 1345-1368.
Liu, K., Huang, F., Gao, S., Zhang, Z., Ren, Y., An, B., 2022. Morphology of framboidal pyrite and its textural evolution: Evidence from the Logatchev area, Mid-Atlantic Ridge. Ore Geology Reviews, 141: 104630.
Liu, Z., Chen, D., Zhang, J., Lü, X., Wang, Z., Liao, W., Shi, X., Tang, J., Xie, G., 2019. Pyrite morphology as an indicator of paleo-redox conditions and shale gas content of the Longmaxi and Wufeng shales in the middle Yangtze area, south China. Minerals, 9(7): 428.
Lougheed, M.S., Mancuso, J.J., 1973. Hematite framboids in the negaunee iron formation, Michigan; evidence for their Biogenic Origin. Economic geology, 68(2): 202-209.
Love, L., 1967. Early diagenetic iron sulphide in recent sediments of the Wash (England). Sedimentology, 9 (4): 327-352.
Love, L., 1971. Early diagenetic polyframboidal pyrite, primary and redeposited, from the Wenlockian Denbigh Grit Group, Conway, North Wales, UK. Journal Sedimentary Research, 41: 1038–1044.
Love, L., Amstutz, G.C., 1969. Framboidal pyrite in two andesites. News Jahrb Mineral Monatsh, 3: 97-108.
Mahdavi, A., Rajabi, A., 2023. Neotocite textures as a clue to the exploration of Red Bed type sedimenthosted stratabound copper (SSC) deposits–evidence from Ravar–Tabas–Eshghabad copper belt, Central Iran. International Geology Review, (in press). 00206814. Geopersia 2024, 14(1): 145-163 161 2023.2241069
Magnall, J.M., Gleeson, S.A., Stern, R.A., Newton, R.J., Poulton, S.W., Paradis, S., 2016. Open system sulphate reduction in a diagenetic environment–Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn–Pb–Ba deposits, Selwyn Basin, Canada. Geochimica et Cosmochimica Acta, 180: 146-163.
Mahdavi, A., 2008. Geological, Mineralogical, Geochemical and Genesis of Markesheh Copper Deposit, Northwest of Ravar, Kerman. M. Sc Thesis, Tarbiat Modares University of Tehran, Iran: 188 pp. (in Persian with English abstract).
Mahdavi, A., Rastad, A., Hosseini Barzy, M., 2011. Mineralogy, structure and texture and genesis of sedimentary diagenetic Cu Markeshe, Redbed type, in the Garedu Red Formation, Jurassic, south of Central Iran. Scientific Quarterly Journal of Geosciences, 21(81): 81-92.
Mahmoodi, P., Peter, J.M., Rajabi, A., Rastad, E., 2023. Geological and textural characteristics as evidence for Irish-type mineralization in the Eastern Haft-Savaran deposit in: Andrew, C.J., Hitzman, M.W., Stanley, G. (Eds.), Irish-type Deposits around the world, Irish Association for Economic Geology, Dublin, 533-544. DOI:
Mahmoodi, P., Rastad, E., Rajabi, A., Alfonso, P., Canet, C. Peter, J.M., 2021. Genetic model for Jurassic shale-hosted Zn-Pb deposits of the Arak Mining District, Malayer-Esfahan metallogenic belt: Insight from sedimentological, textural, and stable isotope characteristics. Ore Geology Reviews, 136: 104262.
Mahmoodi, P., Rastad, E., Rajabi, A., Moradpour, M., 2019. Mineralization horizons, structure and texture, alteration and mineralization stages in the Zn-Pb (Ba) Eastern Haft-Savaran deposit in Malayer-Esfahan metallogenic belt, south of Khomain. Scientific Quarterly Journal of Geosciences, 28(110): 3-12.
Mahmoodi, P., Rastad, E., Rajabi, A., Peter, J., 2018. Ore facies, mineral chemical and fluid inclusion characteristics of the Hossein-Abad and Western Haft-Savaran sediment-hosted Zn-Pb deposits, Arak Mining District, Iran. Ore Geology Reviews, 95: 342-365.
Menon, K.K., 1967. Origin of diagenetic pyrite in the Quilon Limestone, Kerala, India. Nature, 213(5082): 1219-1220.
Middelburg, J.J., De Lange, G.J., Van Der Sloot, H.A., Van Emburg, P.R., Sophiah, S., 1988. Particulate manganese and iron framboids in Kau Bay, Halmahera (eastern Indonesia). Marine Chemistry, 23(3- 4): 353-364.
Movahednia, M., Rastad, E., Rajabi, A., Maghfouri, S., González, F. J., Alfonso, P., Choulet, F., Canet, C., 2020a. The Ab-Bagh Late Jurassic-Early Cretaceous sediment-hosted Zn-Pb deposit, Sanandaj- Sirjan zone of Iran: ore geology, fluid inclusions and (S–Sr) isotopes. Ore geology reviews, 121: 103484.
Movahednia, M., Rastad, E., Rajabi, A., González Sanz, F.J., 2020b. Elemental zonation and geochemistry of sulphide ore of the Ab-Bagh sedimentary-exhalative Zn-Pb deposit, southeastern margin of the Malayer-Esfahan metallogenic belt. Researches in Earth Sciences, 11(1): 72- 88.
Ohfuji, H., Boyle, A.P., Prior, D.J., Rickard, D., 2005. Structure of framboidal pyrite: An electron backscatter diffraction study. American Mineralogist, 90(11-12): 1693-1704. am.2005.1829.
Ohfuji, H., Rickard, D., 2005. Experimental syntheses of framboids review. Earth-Science Reviews, 71(3-4): 147-170.
Piercey, S.J., 2015. A semipermeable interface model for the genesis of subseafloor replacement-type volcanogenic massive sulfide (VMS) deposit. Economic Geology, 110 (7): 1655-1660.
Piper, D.Z., Calvert, S.E., 2009. A marine biogeochemical perspective on black shale deposition. Earth- Science Reviews, 95(1-2): 63-96.
Prol-Ledesma, R.M., Canet, C., Villanueva-Estrada, R.E., Ortega-Osorio, A., 2010. Morphology of pyrite in particulate matter from shallow submarine hydrothermal vents. American Mineralogist, 95(10): 1500-1507.
Raiswell, R., Berner, R.A., 1985. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science, 285(8): 710-724.
Rajabi, A., 2008. Geology, mineralogy, texture and structure, geochemistry and genesis of Chahmir Zn162 Rajabi et al.
Pb deposit, south of Behabad, Yazd Province. Unpublished M. Sc. thesis, Tarbiat Modares University, Iran: 300p.
Rajabi A., 2022. Metallogeny and geology of sediment-hosted Zn-Pb deposits of Iran. University of Tehran Press, Tehran, 602 pp.
Rajabi, A., Mahmoodi, P., Rastad, E., Canet, C., Alfonso, P., Niroomand, S., Yarmohammadi, A., Perrnajmodin, H., Akbari, Z., 2023. An introduction to Irish-type Zn-Pb deposits in early Cretaceous carbonate rocks of Iran. In: Andrew, C.J., Hitzman, M.W., Stanley, G. (Eds.), Irish-type Deposits around the world. Irish Association for Economic Geology, Dublin, 511-532. DOI:
Rajabi, A., Rastad, E., Alfonso, P., Canet, C., 2012a. Geology, ore facies and Sulphur isotopes of the Koushk vent-proximal sedimentary-exhalative deposit, Posht-e-Badam Block, Central Iran. International Geology Review, 54 (14): 1635-1648.
Rajabi, A., Rastad, E., Canet, C., 2012b. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. International Geology Review, 54(14): 1649-1672.
Rajabi, A., Canet, C., Rastad, E., Alfonso, P., 2015a. Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn-Pb deposits of the Early Cambrian Zarigan-Chahmir Basin, Central Iran. Ore Geology Reviews, 64: 328-353.
Rajabi, A., Rastad, E., Canet, C., Alfonso, P., 2015b. The early Cambrian Chahmir shale-hosted Zn–Pb deposit, Central Iran: an example of vent-proximal SEDEX mineralization. Mineralium Deposita, 50 (5): 571-590.
Rajabi, A., Mahmoodi, P., Rastad, E., Niroomand, S., Canet, C., Alfonso, P., Shabani, A.A.T. and Yarmohammadi, A., 2019a. Comments on “Dehydration of hot oceanic slab at depth 30–50 km: Key to the formation of Irankuh-Emarat Pb-Zn MVT belt, Central Iran” by Mohammad Hassan Karimpour and Martiya Sadeghi. Journal of geochemical exploration, 205: 106346.
Rajabi, A., Mahdavi, A., Mousivand, F., Modabberi, S., Soleymani., 2019b. Metallogeny of sedimentary copper deposits associated with salt tectonic in central Iran. The 7th national conference of tectonics and structural geology of Iran, Tehran, Iran.
Rajabi, A., Alfonso, P., Canet, C., Rastad, E., Niroomand, S., Modabberi, S., Mahmoodi, P., 2020. The world-class Koushk Zn-Pb deposit, Central Iran: A genetic model for vent-proximal shale-hosted massive sulfide (SHMS) deposits–Based on paragenesis and stable isotope geochemistry. Ore geology reviews, 124: 103654.
Rajabi, A., Canet, C., Alfonso, P., Mahmoodi, P., Yarmohammadi, A., Sharifi, S., Mahdavi, A., Rezaei, S., 2022. Mineralization and Structural Controls of the Ab-Bid Carbonate-Hosted Pb-Zn (±Cu) Deposit, Tabas-Posht e Badam Metallogenic Belt, Iran. Minerals, 12(1): 95.
Rickard, D., 1970. The origin of framboids. Lithos, 3(3), 269-293.
Rickard, D., 2006. The solubility of FeS. Geochimica et Cosmochimica Acta, 70(23): 5779-5789.
Rickard D., 2012. Sedimentary pyrite. In: Rickard, David, (ed), Sulfidic Sediments and Sedimentary
Rocks, Vol. 65. Developments in Sedimentology, Elsevier, pp. 233-285.
Rickard D., 2019a. How long does it take a pyrite framboid to form? Earth and Planetary Science Letters, 513: 64-68.
Rickard, D., 2019b. Sedimentary pyrite framboid size-frequency distributions: A metaanalysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 522: 62-75.
Rickard, D., 2021. Framboids. Oxford University Press, Londen, pp. 334.
Rosúa, F. C., Ruano, S. M., Hach-Alí, P. F., 2003. Iron sulphides at the epithermal gold-copper deposit of Palai-Islica (Almería, SE Spain). Mineralogical Magazine, 67(5): 1059-1080.
Rust, G.W., 1935. Colloidal primary copper ores at Cornwall Mines, southeastern Missouri. The Journal of Geology, 43 (4): 398-426.
Sáez, R., Moreno, C., González, F., Almodóvar, G.R., 2011. Black shales and massive sulfide deposits: causal or casual relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar. Mineralium Deposita, 46: 585-614.
Sawlowicz, Z., 1990. Primary copper sulphides from the Kupferschiefer, Poland. Mineralium Deposita, 25(4): 262-271.
Sawlowicz, Z. 1993. Pyrite framboids and their development: a new conceptual mechanism. Geopersia 2024, 14(1): 145-163 163 Geologische Rundschau 82 (1): 148-156.
Sawłowicz, Z., 2000. Framboids: from their origin to application. Mineralogical Transactions, 88: 80 pp.
Scott, R.J., Meffre, S., Woodhead, J., Gilbert, S.E., Berry, R.F., Emsbo, P., 2009. Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration. Economic Geology, 104(8): 1143-1168.
Skei, J.M., 1988. Formation of framboidal iron sulfide in the water of a permanently anoxic fjord- Framvaren, South Norway. Marine Chemistry, 23(3-4): 345-352.
Steinike, K., 1963. A further remark on biogenic sulfides; inorganic pyrite spheres. Economic Geology, 58(6): 998-1000.
Stene, L.P., 1979. Polyframboidal pyrite in the tills of southwestern Alberta. Canadian Journal of Earth Sciences, 16 (10): 2053-2057.
Suits, N. S., Wilkin, R. T., 1998. Pyrite formation in the water column and sediments of a meromictic lake. Geology, 26(12): 1099-1102.
Suk, D., Peacor, D.R., der Voo, R.V., 1990. Replacement of pyrite framboids by magnetite in limestone and implications for palaeomagnetism. Nature, 345(6276): 611-613.
Taylor, G.R., 1982. A mechanism for framboid formation as illustrated by a volcanic exhalative sediment. Mineralium Deposita, 17(1): 23-36.
Wignall, P. B., Newton, R., Brookfield, M. E., 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian–Triassic crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(3-4): 183-188.
Wignall, P., Newton, R., 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mud rocks. American Journal of Science, 298 (7): 537-552.
Wilkin, R.T., Barnes, H., 1997. Formation processes of framboidal pyrite, Geochimica et Cosmochimica Acta, 61 (2): 323-339.
Wilkin, R.T., Barnes, H.L., Brantley, S.L., 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions, Geochimica et Cosmochimica Acta, 60 (20): 3897-3912.
Wilkinson, J.J., 2003. On diagenesis, dolomitisation, and mineralisation in the Irish Zn-Pb ore field. Mineralium Deposita, 38(8): 968-983.
Wilkinson, J.J., Eyre, S.L., Boyce, A.J., 2005. Ore-forming processes in Irish-type carbonate-hosted Zn- Pb deposits: Evidence from mineralogy, chemistry, and isotopic composition of sulfides at the Lisheen mine. Economic Geology, 100(1): 63-86.
Xu, G., Hannah, J.L., Bingen, B., Georgiev, S., Stein, H.J., 2012. Digestion methods for trace element measurements in shales: Paleo-redox proxies examined. Chemical Geology, 324: 132-147.
Yarmohammadi, A., Rastad, E., Rajabi, A., 2016. Geochemistry, fluid inclusion study, and genesis of the sediment-hosted Zn-Pb (±Ag±Cu) deposits of the Tiran basin, NW of Esfahan, Iran. Journal of Mineralogy and Geochemistry, 193 (2): 183-203.
Yesares, L., Drummond, D.A., Hollis, S.P., Doran, A.L., Menuge, J.F., Boyce, A.J., ... Ashton, J.H., 2019. Coupling mineralogy, textures, stable and radiogenic isotopes in identifying ore-forming processes in Irish-type carbonate-hosted Zn–Pb deposits. Minerals, 9(6): 335.
Zhao, J., Liang, J., Long, X., Li, J., Xiang, Q., Zhang, J., Hao, J., 2018. Genesis and evolution of framboidal pyrite and its implications for the ore-forming process of Carlin-style gold deposits, southwestern China. Ore Geology Reviews, 102: 426-436.