Petrogenesis and tectonic implications of Miocene dikes in the southeast of Bam: Constraints on the development of active continental margin

Document Type : Research Paper

Authors

1 Department of Geology, North Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Geology, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran

3 Department of Geology, Mashhad Branch, Islamic Azad University, Mashhad , Iran

Abstract

Fudge dikes of diorite and microdiorite are penetrated in the Mio-Pliocene sedimentary-volcanic series in the northeast of Bam. In terms of lithology, these dikes are placed in two categories: gabbro-diorite. The primary minerals of the dikes are plagioclase, amphibole (hornblende), and augite, and secondary minerals such as chlorite, biotite, and sericite. Also, their textures are granular, ophitic, and microgranular. From the geochemical point of view, gabbro-diorites have sub-alkaline and met aluminum with enrichment of LILE and HREE and depletion of Nb and Ta elements. The parental magma of the gabbro-diorites is obtained from the melting of a part of the subcontinental lithospheric mantle affected by the subduction producers and in equilibrium with lherzolite spinel. The characteristics of incompatible element patterns include LILE enrichment and HFSE depletion compared to REE similar to subduction zone igneous rocks. These rocks show the intermediate geochemical characteristics of the volcanic arc magmatism of arc islands and margins, consistent with the formation of these rocks in active continents. Geochemical evidence, as well as the association of igneous rocks with green tuffites and other shallow sea sediments, indicate the occurrence of an extensional basin behind the continental arc.

Keywords

Main Subjects


Article Title [Persian]

_

Abedian, N., Barna, B., Saudi Shaar, P., Ali Akbari, H.A., 2010. preparation of economic geological map 1:25.000 of Ziaratshah-Komahi area located in 1:100.000 Negisan, Geological Organization, and mineral discoveries.
Aden, A.J., Frizzo, P., 1996. Geochemistry and origin of low and high TiO2 mafic rocks in the Barkasan complex: a comparison with common Neoproterozoic gabbros of northern Somali crystalline basement. Journal of African Earth Sciences, 22: 43-54.
Agard, P., Omrani, J., Jolivet, L., Mouthereau, F., 2005. Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94: 401-419.
Aghazadeh, M., Castro, A., Badrzadeh, Z., Vogt, K., 2011. Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran. Geological Magazine, 148: 980-1008.
Aghazadeh, M., Castro, A., Omran, N. R., Emami, M. H., Moinvaziri, H., Badrzadeh, Z., 2010. The gabbro (shoshonitic)-monzonite-granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran. Journal of Asian Earth Sciences, 38: 199-219.
Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society of America Bulletin, 103: 983-992.
Allen, M., Jackson, J., Walker, R., 2004, Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23(2). TC2008. doi:10.1029/2003TC001530.
Al Taha, B., 1382. Petrography and petrology of igneous rocks and related mineralization in the southeast region of Bam Jabal Barez, Ph.D. thesis, Islamic Azad University, Science and Research Unit, Tehran, Iran. 290 p.
Axen, G.J., Lam, P.J., Grove, M., Stockli, D.F., Hassanzadeh, J., 2001. Exhumation of the west-central Alborz Mountains, Iran, Caspian subsidence, and collision-related tectonics. Geology, 29: 559-562.
doi: 10.1130/0091-7613(2001)029<0559:EOTWCA>2.0.CO;2.
Azer, M. K., Abu El-Ela, F. F., Ren, M., 2012. The petrogenesis of late Neoproterozoic mafic dyke-like intrusion in south Sinai, Egypt. Journal of Asian Earth Sciences, 54-55(1): 91-109.
Bailey, D.K., 1983. The chemical and thermal evolution of rifts. Developments in Geotectonics, 19: 585-597.
Bagheri, S., Stampfli, G. M., 2008. The Anarak, Jandaq, and Posht-e-Badam metamorphic complexes in Central Iran: new geological data, relationships, and tectonic implications. Tectonophysics, 451:123-155. Geopersia 2023, 14(1): 89-111 107
Berberian, F., Muir, I., Pankhurst, R., Berberian, M., 1982. Late Cretaceous and early Miocene Andeantype plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139: 605-614.
Boztug, D., 1998. Post-Collisional Central Anatolian Alkaline Plutonism, Turkey. Turkish Journal of Earth Sciences, 7: 145-165.
Braud, J., 1987. La suture du Zagros au niveau de Kermanshah (Kurdistan iranien): reconstitution paleogeographique evolution geodynamique magmatique et structurale. PhD thesis, Universite Paris- Sud,1-430p.
Chekani Mogaddam, Sadeghian, M., Alimohammadian, H., 2012. The study of melt distribution in mafic dikes cutting the Delbar Biyarjomand metamorphic complex by means of the AMS method and determination of their paleopole position. Master’s thesis, Shahrood University. 250p.
Chen, Y., Zhu, D. C., Zhao, Z. D., Meng, F.-Y., Wang, Q., Santosh, M., Wang, L.Q., Dong, G.C., Mo, X.X., 2014. Slab breakoff triggered ca. 113 Ma magmatism around the Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 26: 449-463.
Christiansen, E. H., McCurry, M., 2008. Contrasting origins of Cenozoic silicic volcanic rocks from the western Cordillera of the United States. Bulletin of Volcanology, 70: 251-267.
Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The interpretation of igneous rocks, Allen and Unwin, London, 450 P.
Daly, R.A., 1914. Igneous rocks and their origin: New York, McGraw-Hill, 563 p.
Dilek, Y., Imamverdiyev, N., Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. Journal International Geology Review, 52: 536-578.
Dimitrijevic, M. D., 1973. Geology of Kerman region, Geology Survey of Iran. Report. Report Yu/52., PP 334.
Dufek, J., Bachmann, O., 2010. Quantum magmatism; magmatic compositional gaps generated by meltcrystal dynamics. Geology (Boulder), 38(8): 687-690.
Eftekharnejad, J., 1989. Geological map 1:10000 of Negisan. Publications of Geological Organization of Iran.
Emami, M.E., Amini, B., 1996. Geological map of Aran, scale 1/10000, Organization of Geology and Mineral Exploration of the country.
Ernst, R.E., Bleeker, W., 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the present. Canadian Journal of Earth Sciences, 47: 695-739.
Ernst, R.E., Buchan K.L., 1997. Giant Radiating Dyke Swarms: Their Use in Identifying Pre-Mesozoic Large Igneous Provinces and Mantle Plumes Book Editor(s): John J. Mahoney, Millard F. Coffin. https://doi.org/10.1029/GM100p0297
Ernst, R.E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge, 666.
Ernst, R.E., Buchan, K.L, West, T.D, Palmer, H.C., 1996. Diabase (dolerite) dyke swarms of the world: first edition, Geological Survey of Canada Open File, 3241.
Ernst, R.E., Head, J.W., Parfitt, E., Grosfils, E., Wilson, L., 1995. Giant radiating dyke swarms on Earth and Venus. Earth Science Reviews 39: 1-58. https://doi.org/10.1016/0012-8252(95)00017-5.
Esperanca, S., Crisci, M., de Rosa, R., Mazzuli, R., 1992. The role of the crust in the magmatic evolution of the island Lipari (Aeolian Islands. Italy). Contributions to Mineralogy and Petrology, 112: 450-462.
Fagan, T.J., Day, H.W., 1997. Formation of amphibole after clinopyroxene by dehydration reactions: Implications for pseudomorphic replacement and mass fluxes. Geology 25: 395-398.
Fahrig, W.F., 1987. The tectonic settings of continental mafic dyke swarms: failed arm and early passive margin, In Mafic Dyke Swarms (eds) H C Halls and W F Fahrig Canada: Geological Association of Canada, 34: 331-348.
Gao, Z., Zhang, H., Yang, H., Pan, F., Luo, B., Guo, L., Xu, W., Tao, L., Zhang, L., Wu, J., 2018. Backarc basin development: constraints on geochronology and geochemistry of arc-like and OIB-like basalts in the Central Qilian block (Northwest China). Lithos, 310-311: 255-268. https://doi.org/10.1016/j.lithos.2018.04.002 .
Ghasemi, A., Talbot, C.J., 2006. A new scenario for the Sanandaj- Sirjan zone (Iran). Journal of Asian Earth Sciences, 26: 683-693. 108 Ousta et al.
Ghasemi, H. Rostami Hasori, M., Sadeghian, M., 2017. Basic magmatism in the Lower-Middle Jurassic  back-arc extensional basin in the northern edge of the central Iran zones south of Alborz-Sharghi, Shahrood-Damghan. Earth Science Quarterly, 27(107): 123-136.
Gill, J.B., 1981. Orogenic andesites and plate tectonics, 390. Springer, Berlin. Gladkochub, D.P., Donskaya, T.V., Wingate, M.T.D., Mazukabzov, A.M., Pisarevsky, S.A., Sklyarov,
E.V., Stanevich, A.M., 2010. A one-billion-year gap in the Precambrian history of the southern Siberian Craton and the problem of the Transproterozoic supercontinent: American Journal of Science, 310: 812-825. doi:10.2475/09.2010.03.
Goldberg, K., Humayun, M., 2010. The Applicability of the Chemical Index of Alteration as a Paleoclimatic Indicator: An Example from the Permian of the Parana Basin, Brazil. Paleogeography, Palaeoclimatology, Palaeoecology, 293: 175-183 .
Golonka, J., 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381: 235-273.
Guest, B., 2004. The thermal, sedimentological, and structural evolution of the central Alborz Mountains of northern Iran: Implications for the Arabia-Eurasia continent-continent collision and collisional processes in general [Ph D. thesis]: University of California, Los Angeles, 292p.
Harker, A., 1909. The natural history of igneous rocks. Methuen and Company, London, 344p.
Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical characteristics of collision zone magmatism. Collision tectonics, Geological Society of American Bulletin, 19: 67-81.
Hassanzadeh, J., Axen, G., Guest, B., Stockli, D.F., Ghazi, A.M., 2004. The Alborz and NW Urumieh- Dokhtar magmatic belts, Iran: rifted parts of a single ancestral arc. Geological Society of America National Meeting. Geological Society of America, Denver, Colorado, 434.
Hawkesworth, C.J., Turner, S., Peate, D., McDermott, F., Calsteren, P., 1997. Elemental U and Th variations in island arc rocks: implications for U-series isotopes. Chemical Geology, 139: 207-221.
Hofmann, W. A., Jochum, K.P., Seufert, M., White, W. M., 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 79:33-45, https://doi.org/10.1016/0012-821X(86)90038-5
Homke, S., Verges, J., Garces, M., Emami, M., Karpuz, R., 2004. Magnetostratigraphy of Miocene- Pliocene Zagros foreland deposits in the front of the Push-e-Kush Arc (Lurestan Province, Iran). Earth and Planetary Science Letters, 225: 397-410.
Hooper, R.J., Baron, I.R., Agah, S., Hatcher, R.D., 1994. The Cenomanian to the recent development of the Southern Tethyan Margin in Iran, in Al-Husseini, M.I., ed., Middle East petroleum geosciences. Geology, 505-516.
Hosinie, H., Ahmadi, A.R., Ghanbari Dolatabadi, M., 2017. The origin and tectonomagmatic setting of dykes in the North of Mashhad-Ardehal. Scientific Quarterly Journal, 26: 187-198.
Hosseini, B., Ahmadi, A., Ghanbari Dolatabadi, M., 2016. The origin and location of tectonomagmic dykes in the north of Mashhad, Ardahal, Scientific-Research Quarterly of Earth Sciences, 26(104):198-187.
Hosseini, S.Z., 2015. Geochemistry, petrogenesis, and tectonic environment of Eocene mafic lava flow in Sarcheshme, southwest of Rafsanjan. Scientific-Research Quarterly of Earth Sciences, 25(100): 209-220.
Hou, G., 2012. Mechanism for three types of mafic dyke swarms. Geoscience Frontiers, 3(2): 217-223. https://doi.org/10.1016/j.gsf.2011.10.003.
Imaoka, T., Nakashima, K., Kamei, A., Itaya, T., Ohira, T., Nagashima, M., Kono, N., Kiji, M., 2014. Episodic magmatism at 105 Ma in the Kinki district, SW Japan: petrogenesis of Nb-rich lamprophyres and adakites, and geodynamic implications. Lithos, 184-187, 105-131.
Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth science, 8: 523-276. https://doi.org/10.1139/e71-055.
Jourdan, F., Bertrand, H., Schärer, U., Blichert Toft, J., Féraud, G., Kampunzu, A.B., 2007. Major and Trace Element and Sr, Nd, Hf, and Pb Isotope Compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe: Lithosphere vs Mantle Plume Contribution. Journal of Petrology, 48(6): 1043- 1077, https://doi.org/10.1093/petrology/egm010
Kjøll, H.J., Galland, O., Labrousse, L., Andersen, T.B., 2019. Deep section of a Neoproterozoic fossil magma rich rifted margin exposed, EGU General Assembly 19: Vienna.
Kamenetsky, V.S., Crawford, A.J., Meffre, S., 2001. Factors Controlling Chemistry of Magmatic
Geopersia 2023, 14(1): 89-111 109 Spinel: An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 42: 655-671.
Kargaran, F., Neubauer, F., Genser, J., Houshmandzadeh, A., 2006. The Eocene Chapedony metamorphic core complex in Central Iran: preliminary structural results. Geophysical Research Abstracts, 8.
Kargaranbafghi, F., Neubauer, F., Genser, J., 2010. Mesozoic and Eocene ductile deformation of western Central Iran: from Cimmerian collisional orogeny to Eocene extension and exhumation. In: EGU general assembly conference abstracts, 62-68
Kargaranbafghi, F., Neubauer, F., Genser, J., 2011. Cenozoic kinematic evolution of southwestern Central Iran: strain partitioning and accommodation of Arabia-Eurasia convergence. Tectonophysics, 502(1): 221-243.
Katja Deckart, K., Clark, A. H., Celso, A. A., Ricardo, V., Bertens, A. N., Mortensen, K. J., Fanning, M., 2005. Magmatic and Hydrothermal Chronology of the Giant Río Blanco Porphyry Copper Deposit, Central Chile: Implications of an Integrated U-Pb and 40Ar/39Ar Database Economic Geology, 100 (5): 905-934. https://doi.org/10.2113/gsecongeo.100.5.905
Linnen, R.L., Keppler, H., 2002. Melt composition control of Zr/Hf fractionation in magmatic processes. Geochimica et Cosmochimica Acta, 66: 3293-3301.
Loiselle, M.C., 1979. Characteristics and origin of orogenic granites. Geological Society of America, 11: 468.
Maniar, P. D., Piccoli, P. M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635-643.
Marks, M., Halama, R., Wenzel, T., Markl, G., 2004. Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral-mel traceelement partitioning. Chemical Geology, 211, 185-215.
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79: 1-24.
McCurry, M., Hayden, K.P., Morse, L.H., Mertzman, S., 2008. Genesis of post-hotspot, A-type rhyolite of the eastern Snake River Plain volcanic field by extreme fractional crystallization of olivine tholeiite. Bulletin of Volcanology, 70(3): 361-383.
McDonough, W., Frey, F., 1989. Rare earth elements in upper mantle rocks. Reviews in Mineralogy and Geochemistry, 21(1):100-145.
McQuarrie, N., Stock, J.M., Verdel, C., Wernicke, B.P., 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophysical Research Letters, 30: 20-36. doi: 10.1029/2003GL017992.
Mohajjel, M., Fergusson, C.L., Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, western Iran. Journal of Asian Earth Sciences, 21: 397-412, doi: 10.1016/S1367-9120(02)00035-4.
Mousavi Makoui, A., 1998. Petrological study of Narigan granite, master's thesis, Shahid Beheshti University.
Nik Tabar S.M., Rashidnjademran, N., 2015. Geochemistry and Lithography of Mafic Floods in Rizo Series, North of Bafq (Central Iran). Geochemistry, 5(3): 261-267.
Paulick, H., Bach, W., Godard, M., De, HJCM., Surir, G., Harvey, J., 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15200N, ODP Leg 209): implication for fluid/rock interaction in slow spreading environments. Chemical Geology, 234:179-210.
Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Publications, Nantwich, Cheshire, pp 230-249.
Pearce, J. A., Harris, N.B., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956-983.
Pollard, D.D., 1987. Elementary fracture mechanics applied to the structural interpretation of dykes. In: Halls, H.C., Fahrig, W.H. (Eds.), Mafic Dyke Swarms, vol. 34. Geological Association of Canada Special Paper, pp. 524.
Prichard, H.M., 1993. Magmatic Processes and Plate Tectonics (Geological Society Special Publication No 76). Amer Assn of Petroleum Geologists. 110 Ousta et al.
Prowatke, S., Klemme, S., 2005. Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochimica et Cosmochimica Acta 69, 695-709.
Ramezani, J. and Tucker, R., 2003. The Saghand region, Central Iran: U/Pb geochronology, petrogenesis and implication for Gondwana tectonics. American Journal of Science 303: 622-665. https://doi.org/10.2475/ajs.303.7.622.
Robertson, A.H.F., Clift, P.D., Degnan, P.J., Jones, G., 1991. Paleogeographic and paleotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography Palaeoclimatology Palaeoecology, 87: 289-343.
Robertson, A.H.F., 2000. Mesozoic-Tertiary tectonic-sedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey, in Bozkurt, E., et al., eds., Tectonics and magmatism in Turkey and the surrounding area: Geological Society [London] Special Publication, 173: 97-138.
Rollinson, H.R., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman, Harlow, England.
Rudnick, R.L., Fountain, D.M., 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33: 267-30, https://doi.org/10.1029/95RG01302.
Sarhadi, N., Ahmadi A. Firouzkohi Z. and Jami M., 2016. Lithology and geochemistry of mesocratic and malnocratic dykes in Lakhshak granodiorite body, North West of Zahedan. 104, 26:149-162.
Saunders, AD., Norry, MJ., Tarney, J., 1988. Origin of MORB and chemically-depleted mantle reservoirs: trace element constraints. Journal of Petrology, 1: 415-445.
Schandl, E.S., Gorton, M.P., 2002. Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic geology, 97(3): 629-642.
Shelley, D., 1993. Igneous and metamorphic rocks under the microscope: classification, textures, microstructures and mineral preferred-orientations.
Şengör, A.M.C., Kidd, W.S.F., 1979. The post-collisional tectonics of the Turkish- Iranian Plateau and a comparison with Tibet. Tectonophysics, 55: 361-376.
Şengör, A.M.C., Natal’in, B.A., 1996. Palaeotectonics of Asia: Fragments of a synthesis: Cambridge University Press, Cambridge.
Sengor, A.M.C., Cin, A., Rowley, D.B., Nie, S.Y., 1993. Space-time patterns of magmatism along the Tethysides: a preliminary study. Journal of Geology, 101: 51-84.
Stalder, R., Foley, S. F., Brey, G.P. and Horn, I., 1998. Mineral-aqueous fluid partitioning of trace elements at 900-1200°C and 3.0-5.7 GPa: new experimental data for garnet,clinopyroxene, and rutile, and implications for mantle metasomatism. Bulletin of the Geological Society of America, 62: 1781-1801.
Stocklin, J., 1974. Possible ancient continental margins in Iran. In: Burk, C.A., Drake, C.L. (Eds.), The Geology of Continental Margins. Springer Verlag, 873-887.
Stoneley, R., 1981. The Geology of the Kuh-e Dalneshin Area of Southern Iran, and Its Bearing on the Evolution of Southern Tethys. Journal of the Geological Society, 138:509-526. http://dx.doi.org/10.1144/gsjgs.138.5.0509
Tajbakhsh, G.H., 2020. Petrography, geochemistry and tectonic setting of mafic dyke swarm of Zargian granitoid, North of Bafq (Central Iran). Scientific Quarterly Journal, 30: 175-188.
Tchameni, R., Pouclet, A., Penay, J., Ganwa, A.A., Toteu, SF., 2006. Petrography and geochemistry of the Ngaondere Pan - African granitoids in Central North Cameroon: Implication for their sources and geological setting. Journal of African Earth Sciences, 44: 511 -529.
Tillman, J. E.A., Poosti, S., Rossello, S., Eckert., A., 1981. Structural evolution of Sanandaj-Sirjan Ranges near Esfahan, Iran. American Association of Petroleum Geologists, 65: 674-687p.
Verdel, C., Wernicke, B.P., Ramezani, J., Hassanzadeh, J., Renne, P.R., Spell, T.L., 2007. Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of Central Iran. Bulletin of the Geological Society of America, 119(7-8): 961-977.
Vernon, R.H., Clarke, G.L. 2008. Principles of Metamorphic Petrology. Cambridge University Press. Walker, J.A., Patino, L.C., Carr, M.J., Feigenson, M.D. 2001. Slab control over HFSE depletions in Central Nicaragua. Earth and Planetary Science Letters, 192: 533-543.
Wedepohl, K.H. 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59: 1217-1232. http://dx.doi.org/10.1016/0016-7037(95)00038-2
Wilson, M., 1989. Igneous petrogenesis: a global tectonic approach. Chapman and Hall, New York, 496 p. Geopersia 2023, 14(1): 89-111 111
Wood, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 42: 77-97.
Woodruff, F., Savin, S.M., 1989. Miocene deep water oceanography. Paleoceanography 4, 87-140.
Xu, Y.G., Lan, J.B., Yang, Q.J., Huang, X.L., Qiu, H.N., 2008. Eocene break-off of the NeoTethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet. Chemical Geology, 255: 439-453.
Yadav, P., Sarma, D.S., 2021. Geochemistry of 2.21 Ga giant radiating dyke swarm from the Western Dharwar Craton, India: Implications for petrogenesis and tectonic evolution. Geological Journal, 1-26.
Yang, Q.Y., Santosh, M., Dong, G., 2014. Late Palaeoproterozoic post-collisional magmatism in the North China Craton: geochemistry, zircon U-Pb geochronology, and Hf isotope of the pyroxenitegabbro- diorite suite from Xinghe, Inner Mongolia. International Geology Review, 56: 959-984.
Yazdani, M., Masoumeh Ahangari, M., Jahangiri, A., Shokohi, H., 2016. Petrology and geochemistry of Nabijan gabbroic and dioritic plutons (southwest Kaleybar, NW Iran): an implication for postcollision magmatism. Petrology 7(26): 1-22.
Yazdi, A., Ashja-Ardalan, A., Emami, M.H., Dabiri, R., Foudazi, M., 2019. Magmatic interactions as recorded in plagioclase phenocrysts of quaternary volcanics in SE Bam (SE Iran), Iranian Journal of Earth Sciences, 11(3): 215-224. https://doi.org/10.30495/ijes.2019.667379
Yazdi, M. Rasa, A. Nooryan Ramsheh, Z. Librarian, M. and Baskabadi, A., 2013. Albit formation in igneous rocks of Chah-Jole area, Journal of Basic Sciences of Islamic Azad University, edition, 21 pages.
Yılmaz, Y., 1993. New evidence and model on the evolution of the southeast Anatolian Orogen. Geological Society of America Bulletin, 105: 251-71.
Zhang, Z.C., Mahoney, J.J., Mao, J.W., Wang, F.H., 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47 (10): 1997-2019.