Comparing the Porosities of Upper Red Sandstone and Asmari Limestone using Petrographic Image Analysis and Saturation-Buoyancy Methods

Document Type : Research Paper

Authors

Department of Geology, Faculty of Basic Science, Tarbiat Modares University, Tehran 14155-111, Iran

Abstract

This study compares rock porosities measured using petrographic image analysis (PIA) and saturation-buoyancy (SB) methods. To this end, the fresh block samples from sandstone and limestone were collected from Upper Red and Asmari Formations, respectively. Next, cylindrical core specimens from those were prepared using a coring machine. Afterward, the porosity values of sandstone and limestone samples were measured using PIA and SB methods. In the next step, the physical and mechanical properties of samples, including water absorption (W), P wave velocity (PWV), uniaxial compressive strength (UCS), Young’s modulus (E), point load strength index (PLSI), and Brazilian tensile strength (BTS), were determined. Results showed that PIA underestimates the porosity in both rocks. These conservative results can be attributed to the incomplete filling of micropores with blue-dyed epoxy resin in sandstone cement and limestone matrix or petrographic microscope limitation to differentiate micro-pores in cement and matrix. Furthermore, results demonstrated that SB in upper red sandstone has a good correlation with W, E, and BTS and a moderate correlation with PWV, UCS, and PLSI. Besides, porosity of limestone samples showed strong relation with W, PWV, and BTS, while UCS and E data versus porosity showed a scattering pattern. Finally, a strong relation was established between PIA porosity and UCS, E, and PLSI, a poor correlation was established in the cases of W, PWV, and BTS. Overall, PIA is a strong method for investigating the interior pore system of rocks, especially isolated pore spaces, although it underestimates rocks porosity compared to the SB method.

Keywords

Main Subjects


Article Title [Persian]

_

Akin, M, 2010. A quantitative weathering classification system for yellow travertines. Environ Earth Sci 61(1): 47-61.
Ahmadhadi, F. Daniel, J.M. Azzizadeh, M. Lacombe, O (2008) Evidence for pre‐folding vein development in the Oligo‐Miocene Asmari Formation in the Central Zagros Fold Belt, Iran. Tectonics 27 (1).
Alves, H. Lima, I. Assis, J.T. Geraldes, M. Lopes, R.T., 2014. Comparison of pore space features by thin sections and X-ray microtomography. Appl Radiat Isot 94:182-190.
Andriani, G., Walsh, N., 2002. Physical properties and textural parameters of calcarenitic rocks: qualitative and quantitative evaluations. Eng Geol 67: 5-15.
Anselmetti, F.S. Luthi, S. Eberli, G.P, 1998. Quantitative characterization of carbonate pore systems by digital image analysis. AAPG Bull 82:1815–1836
Assefa, S., McCann, C., Sothcott, J., 2003. Velocities of compressional and shear waves in limestones.
Geophys Prospect 51:1-13.
Bell, F.G., Lindsay, P., 1999. The petrographic and geomechanical properties of some sandstones from the Newspaper Member of the Natal Group near Durban, South Africa. Eng Geol 53(1): 57-81.
Benavente, D., García del Cura, M.A. Fort, R. Ordóñez, S., 2004. Durability estimation of porous Geopersia 2024, 14(1): 23-44 41
building stones from pore structure and strength. Eng Geol 74:113-127. Benavente, D., Fort, R., Gomez-Heras, M., 2021. Improving uniaxial compressive strength estimation of carbonate sedimentary rocks by combining minimally invasive and non-destructive techniques. Int. J. Rock Mech. Min. Sci 147: 104915.
Berrezueta, E. González-Menéndez, L. Ordóñez-Casado, B. Olaya, P., 2015. Pore network quantification of sandstones under experimental CO2 injection using image analysis. Comput Geosci 77: 97-110.
Boving, T.B and Grathwohl, P., 2001. Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity. J Contam Hydrol 53:85-100. https://doi.org/10.1016/S0169- 7722(01)00138-3
Cerepi, A. Humbert, L. Burlot, R., 2001. Petrophysical properties of porous medium from petrographic image analysis data. Colloids Surf A Physicochem Eng Asp 187: 233-256. https://doi.org/10.1016/S0927-7757(01)00636-7
Chang, C., Zoback, M. D., Khaksar, A., 2006. Empirical relations between rock strength and physical properties in sedimentary rocks. J Pet Sci Eng 51(3-4): 223–237.
Choquette, P.W and Pray, L.C., 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG bulletin 54(2): 207-250.
Dehghanian, M.S. Khosrotehrani, K. Afghah, M. Keshani, F (2012) Microfacies study of Asmari formation in the northwest and southeast of Shiraz, Iran. Advances in Environmental Biology 6(2): 556-563.
Di Benedetto, C. Cappelletti, P. Favaro, M. Graziano, S.F. Langella, A. Calcaterra, D. Colella, A., 2015. Porosity as key factor in the durability of two historical building stones: Neapolitan Yellow Tuff and Vicenza Stone. Eng Geol 193:310-319.
Dunham, R.J (1962) Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (Ed.), Classification of carbonate rocks. Am. Assoc. Pet. Geol. Mem., 1: 108–12.
Erdoğan, O., Özvan, A (2015) Evaluation of strength parameters and quality assessment of different lithotype levels of Edremit (van) travertine (eastern Turkey). Afr Earth Sci 106:108-117.
Farrell, N.J.C. Healy, D. Taylor, C.W (2014) Anisotropy of permeability in faulted porous sandstones. J Struct Geol 63:50-67.
Farrokhrouz, M., Asef, M. R., 2017. Experimental investigation for predicting compressive strength of sandstone. J Nat Gas Sci Eng 43: 222-229.
Folk, R.L (1962) Spectral subdivision of limestone types. In: Ham, W.E. (Ed.), Classification of Carbonate Rocks. Am. Assoc. Pet. Geol. Mem., 1: 62-84, Tulsa.
Folk, R.L (1974). Petrology of sedimentary rocks. Austin. Texas, Hemphill, 182.
Freire-Lista, D. M., Fort, R., Varas-Muriel, M. J. 2015. Freeze–thaw fracturing in building granites. Cold Reg. Sci. Technol., 113, 40-51.
Freire-Lista, D.M., Fort, R. and Varas-Muriel, M.J., 2016. San Pedro leucogranite from A Coruña, Northwest of Spain: Uses of a heritage stone. Energy Procedia., 97: 554-561. https://doi.org/10.1016/j.egypro.2016.10.075
Freire-Lista, D. M., Gonçalves, G. V., Vazquez, P., 2022. Weathering detection of granite from three asynchronous historical quarries of Sabrosa municipally (North Portugal). J. Cult. Herit, 58: 199- 208. https://doi.org/10.1016/j.culher.2022.10.008
Galaup, S. Liu, Y. Cerepi, A., 2012. New integrated 2D–3D physical method to evaluate the porosity and microstructure of carbonate and dolomite porous system. Microporous Mesoporous Mater. 154,175-186.
Ghasemi, S. Khamehchiyan, M., Taheri, A., Nikudel, M.R., Zalooli, A., 2021. Microcracking behavior of gabbro during monotonic and cyclic loading. Rock Mech Rock Eng 54: 2441-2463.
Ghiasi-Freez, J. Soleimanpour, I. Kadkhodaie-Ilkhchi, A. Ziaii, M. Sedighi, M. Hatampour, A., 2012. Semi-automated porosity identification from thin section images using image analysis and intelligent discriminant classifiers. Comput Geosci 45:36-45.
Ghobadi, M.H and Babazadeh, R., 2015a. An investigation on the effect of accelerated weathering on strength and durability of Tertiary sandstones (Qazvin province, Iran). Environ Earth Sci 73(8):4237-4250.
Ghobadi, M.H., Babazadeh, R., 2015b. Experimental studies on the effects of cyclic freezing-thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected 42 Nejati et al. sandstones. Rock Mech Rock Eng 48:1001-1016.
Ghobadi, M., Babazadeh, R., 2016. The assessment of salt weathering and freeze-thaw effect on strength and durability of upper red formation sandstones. jeg. 10 (1):3351-3378.
Grove, C and Jerram, D.A., 2011. jPOR: An ImageJ macro to quantify total optical porosity from bluestained thin sections. Comput Geosci 37:1850-1859.
Haines, T.J., Neilson, J.E., Healy, D., Michie, E.A., Aplin, A.C., 2015. The impact of carbonate texture on the quantification of total porosity by image analysis. Comput Geosci 85:112-125. https://doi.org/10.1016/j.cageo.2015.08.016
Higgins, M.D. 2006. Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511535574
ISRM 2007. Rock characterization, testing and monitoring. In: Brown ET (ed) International society of rock mechanics suggested methods. Pergamon Press, Oxford 1-211.
James, R.A., 1995. Application of petrographic image analysis to the characterization of fluid-flow pathways in a highly-cemented reservoir: Kane Field, Pennsylvania, USA. J Pet Sci Eng 13:141-154.
Jamshidi A, Nikudel MR, Khamechiyan M., 2013. Estimating the durability of building stones against Salt crystallization: considering the physical properties and strength characteristics. Geopesia 3:35-48.
Jamshidi A., Nikudel M.R., Khamehchiyan, M., Zalooli, A., 2015. Statistical models for predicting the mechanical properties of travertine building stones after freeze-thaw cycles. In: Lollino G et al. (eds) Engineering geology for society and territory, Springer, Heidelberg, 8: 477-481.
Jamshidi A, Nikudel MR, Khamehchiyan M., 2016. Evaluation of the durability of Gerdoee travertine after freeze–thaw cycles in fresh water and sodium sulfate solution by decay function models. Eng Geol 202:36-43.
Jamshidi A, Nikudel MR, Khamehchiyan M, Zalooli A, Yeganehfar H., 2017. Estimating the mechanical properties of travertine building stones due to salt crystallization using multivariate regression analysis. J Sci I R Iran 28: 231–241.
Jamshidi, A., Zamanian, H., Zarei Sahamieh, R., 2018. The effect of density and porosity on the correlation between uniaxial compressive strength and P-wave velocity. Rock Mech Rock Eng, 51, 1279-1286.
Jamshidi, A., 2022. A Comparative Study of Point Load Index Test Procedures in Predicting the Uniaxial Compressive Strength of Sandstones. Rock Mech Rock Eng 55: 4507-4516.
Jeng, F.S. Weng, M.C. Lin, M.L. Huang, T.H., 2004. Influence of petrographic parameters on geotechnical properties of tertiary sandstones from Taiwan. Eng Geol 73:71-91.
Kahraman, S. Gunaydin, O. Fener, M., 2005 The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42: 584-589. https://doi.org/10.1016/j.ijrmms.2005.02.004
Kassab, M. A., Weller, A., 2015. Study on P-wave and S-wave velocity in dry and wet sandstones of Tushka region, Egypt. Egypt J Pet 24(1): 1-11.
Khanlari, G and Abdilor, Y., 2015. Influence of wet-dry, freeze-thaw, and heat-cool cycles on the physical and mechanical properties of upper red sandstones in central Iran. Bull Eng Geol Environ 74:1287–1300.
Khanlari, G. Sahamieh, R.Z. Abdilor, Y., 2014. The effect of freeze–thaw cycles on physical and mechanical properties of Upper Red Formation sandstones, central part of Iran. Arab J Geosci. https://doi.org/10.1007/s12517-014-1653-y
Khosrow Tehrani, K., 1989. Stratigraphy of Iran and type sections of the formations. Tehran. Tehran University pp. 353
Lasemy, Y., 1990. Depositional environments of Upper Red formation. 9th earth science symposium. Tehran. Geological Survey of Iran.
Martínez-Martínez, J. Benavente, D. García Del Cura, M.A., 2007. Petrographic quantification of brecciated rocks by image analysis. Application to the interpretation of elastic wave velocities. Eng Geol 90:41-54.
Mishra, D.A and Basu, A., 2013. Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng Geol 160:54-68. https://doi.org/10.1016/j.enggeo.2013.04.004
Moradi, M. Moussavi-Harami, R. Mahboubi, A. Khanehbad, M. Ghabeishavi, A (2017) Rock typing Geopersia 2024, 14(1): 23-44 43
using geological and petrophysical data in the Asmari reservoir, Aghajari Oilfield, SW Iran. J Pet Sci Eng 152:523-537.
Motiei, H., 1993. Stratigraphy of Zagros. Geological survey of Iran, pp 583
Nabawy, B.S., 2014. Estimating porosity and permeability using digital image analysis (DIA) technique for highly porous sandstones. Arab J Geosci 7(3):889-898.
Najibi, A.R. Ghafoori, M. Lashkaripour, G.R., 2015. Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J Pet Sci Eng 126:78-82.
Neto, I.A.L. Misságia, R.M. Ceia, M.A. Archilha, N.L. Oliveira, L.C., 2014. Carbonate pore system evaluation using the velocity–porosity–pressure relationship, digital image analysis, and differential effective medium theory. J Appl Geophys 110:23-33.
Obara, B., 2007. Identification of transcrystalline microcracks observed in microscope images of a dolomite structure using image analysis methods based on linear structuring element processing. Comput Geosci 33(2):151-158.
Pappalardo, G. Punturo, R. Mineo, S. Contrafatto, L., 2017. The role of porosity on the engineering geological properties of 1669 lavas from Mount Etna. Eng Geol 221:16-28.
Paxton, S.T. Szabo, J.O. Ajdukiewicz, J.M. Klimentidis, R.E., 2002. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs. AAPG Bull 86: 2047–2067.
Peng, S. Hassan, A. Loucks, R.G., 2016. Permeability estimation based on thin-section image analysis and 2D flow modeling in grain-dominated carbonates. Mar Petrol Geol 77:763-775.
Perring, C.S. Barnes, S.J. Verrall, M.H.R., 2004. Using automated digital image analysis to provide quantitative petrographic data on olivine-phyric basalts. Comput Geosci 30:183-195. https://doi.org/10.1016/j.cageo.2003.10.005
Pettijohn, F.J., 1975. Sedimentary rocks (Vol. 3). New York. Harper & Row.
Přikryl, R., 2006. Assessment of rock geomechanical quality by quantitative rock fabric coefficients: Limitations and possible source of misinterpretations. Eng Geol 87:149-162. https://doi:10.1016/j.enggeo.2006.05.011
Qi, Y., Ju, Y., Yu, K., Meng, S., Qiao, P., 2022. The effect of grain size, porosity and mineralogy on the compressive strength of tight sandstones: A case study from the eastern Ordos Basin, China. J Pet Sci Eng 208: 109461. https://doi.org/10.1016/j.petrol.2021.109461
Rabbani, A., Assadi, A., Kharrat, R., Dashti, N., Ayatollahi, S., 2017. Estimation of carbonates permeability using pore network parameters extracted from thin section images and comparison with experimental data. J. Nat. Gas Sci. Eng., 42, pp. 85–98. https://doi.org/10.1016/j.jngse.2017.02.045
Ruzyla, K., 1986. Characterization of pore space by quantitative image analysis. SPE Form Eval 1(04):389-398.
Scholle, P.A and Ulmer-Scholle, D.S., 2003. A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. AAPG Mem 77:1–474.
Shaeri, J. Mahdavinejad, M., Zalooli, A., 2022. Physico-mechanical and Chemical Properties of Coquina Stone Used as Heritage Building Stone in Bushehr, Iran. Geoheritage. 14(3): 95. https://doi.org/10.1007/s12371-022-00738-0
Solymar, M and Fabricius, I.L (1999) Image analysis and estimation of porosity and permeability of Arnager greensand, Upper Cretaceous, Denmark. Phys Chem Earth Solid Earth Geodes 24(7): 587- 591.
Sousa, L.M.O. Suarez del Rio, L.M. Calleja, L. Ruiz de Argondona, V.G. Rey, A.R., 2005. Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng Geol 77: 153-168.
Stueck, H., Koch, R., Siegesmund, S., 2013. Petrographical and petrophysical properties of sandstones: statistical analysis as an approach to predict material behaviour and construction suitability. Environ Earth Sci 69: 1299-1332.
Török, Á., Vásárhelyi, B., 2010. The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Eng Geol, 115(3-4): 237-245.
Tucker, M.E., 2009. Sedimentary petrology: an introduction to the origin of sedimentary rocks. John Wiley & Sons.
Tuǧrul, A., 2004. The effect of weathering on pore geometry and compressive strength of selected rock 44 Nejati et al.
types from Turkey. Eng Geol 75:215-227.
Tugrul, A and Zarif, I.H., 1999. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Engng. Geol. 51:303-317.
Wennberg, O. Svånå, T. Azizzadeh, M. Aqrawi, A. Brockbank, P. Lyslo, K. Ogilvie, S., 2006 Fracture intensity vs. mechanical stratigraphy in platform top carbonates: the Aquitanian of the Asmari Formation, Khaviz Anticline, Zagros, SW Iran. Pet Geosci 12: 235-246.
Zalooli, A., Khamehchiyan, M., Nikudel, M.R. and Jamshidi, A., 2017. Deterioration of travertine samples due to magnesium sulfate crystallization pressure: examples from Iran. Geotech Geol Eng.35: 463-473.
Zalooli, A. Freire-Lista, D.M. Khamehchiyan, M. Nikudel, M.R. Fort, R. Ghasemi, S (2018a) Ghalehkhargushi rhyodacite and Gorid andesite from Iran: characterization, uses, and durability. Environ Earth Sci 77: 315. https://doi.org/10.1007/s12665-018-7485-4
Zalooli, A. Khamehchiyan, M. Nikudel, M.R., 2018b. The quantification of total and effective porosities in travertines using PIA and saturation-buoyancy methods and the implication for strength and durability. Bull Eng Geol Environ. 77(4): 1739-1751.
Zalooli, A. Khamehchiyan, M. Nikudel, M.R. Freire-Lista, D.M. Fort, R. and Ghasemi, S., 2020. Artificial microcracking of granites subjected to salt crystallization aging test. Bull Eng Geol Environ. 79: 5499-5515.
Zorlu, K. Gokceoglu, C. Ocakoglu, F. Nefelioglu, H.A. Acikalin, S., 2008. Prediction of uniaxial compression strength of sandstones using petrography-based models. Eng Geol 96(3/4):141-158.