Depositional environment and sequence stratigraphy of the Upper Cretaceous successions in Eastern Alborz Basin, Damghan, Iran

Document Type : Research Paper

Authors

1 Department of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 School of Earth Sciences, Damghan University, 36716-41167 Damghan, Iran

Abstract

A study on depositional environment, diagenetic history, and sequence stratigraphy of the upper Cretaceous successions of the boundary between the Central and Eastern Alborz zones is lacking. This study attempts to tackle this issue by analyzing a succession composed of 120 meters of medium- to thick-bedded limestones. Facies analysis led to the identification of facies associations of terrestrial, inner ramp (proximal, mid, and distal lagoon and shoal), mid ramp, outer ramp, and basin settings. According to the lateral and vertical changes in facies associations indicating gradual facies variations and the absence of large barrier reef organisms, a carbonate platform of ramp type with a bioclastic shoal is suggested for the studied succession. However, regarding the presence of turbidites in the transition of mid and outer ramp facies, a distally steepened ramp better suits the studied succession. Diagenetic study reveals products of eogenesis, mesogenesis, and telogenesis stages. Sequence stratigraphic analysis based on facies analysis and field observation denoted one 3rd-order depositional sequence, which its maximum flooding surface is equivalent to MFS K180 of the Arabian Plate (AP) with middle Maastrichtian age. A disconformity at the topmost of the studied succession correlates with the upper sequence boundary of megasequence AP9 around the Cretaceous–Paleogene boundary.

Keywords

Main Subjects


Article Title [Persian]

-

Aghanabati, A., 2006. Geology of Iran. Geological Survey of Iran, 516 p.
Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304: 1-20.
Alavi, M., 2007. Structures of the Zagros fold-thrust belt in Iran. American Journal of Science, 307: 1064-1095.
Bachmann, M., Hirsch, F., 2006. Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sea-level change. Cretaceous Research, 27: 487-512.
Baques, V., Ukar, E., Laubach, S.E., Forstner, S.R., Fall A., 2020. Fracture, dissolution, and cementation events in Ordovician Carbonate Reservoirs, Tarim Basin, NW China. Geofluids, 2020: 1-28.
Bebout, D.G., Budd, D.A.,Schatzinger, R.A., 1981. Depositional and diagenetic history of the Sligo and Huston Formations (Lower Cretaceous) in South Texas. GCAGS Transactions, No. 109
Berberian, M., 1976. Contribution to the Seismotectonics of Iran (Part II). Geological Survey of Iran, 39: 518 p.
Bromley, R.G., 1996. Trace fossils: Biology, Taphonomy and applications Second edition, Capman & Hall, London, 361 p.
Bodaghi, F., Hadavi, F., 2014. The biostratigraphy of the uppermost calcareous nannofossils of Cretaceous deposit in both Shahdar and Namazgah sections (NE Iran). Arabian Journal of Geosciences, 7: 4793-4808.
Bodaghi, F., Hadavi, F., 2015. Calcareous nannofossils from Late Cretaceous deposits in Mojen section (NE Iran). Arabian Journal of Geosciences, 8: 4001-4009.
Bodaghi, F., Hadavi, F., Rahimi, B., 2013. Calcareous nannofossils biostratigraphy and paleoecology of the last layers related to eastern Alborz Cretaceous deposits in Cheshmeh ghol ghol section. Paleontology, 1: 19-36.
Burchette, T.P., Wright, V.P., 1992. Carbonate ramp depositional systems. Sedimentary Geology, 79: 3-57.
Choquette, P.W., Pray, L.C., 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. Bull. Am. Ass. Petrol. Geol, 54: 207-250.
Coleman, M., Raiswell, R. 1995. Source of carbonate and origin of zonation in pyritiferous carbonate concretions: evaluation of a dynamic model. American Journal of Science, 295: 282-308.318 Parimi et al.
Cook, M.L., Simo, J.A., Underwood, C.A., Rijken, P., 2006. Mechanical stratigraphic controls on fracture patterns within Carbonates and implications for ground-water flow. Sedimentary Geology, 184: 225-239.
Christian, L., 1997. Cretaceous subsurface geology of the Middle East region. GeoArabia, 2: 239-256.
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture (W.E. Ham, Editor), Classification of Carbonate Rocks. American Association of Petroleum Geology, Memoir, 1: 108-121.
Embry, A.F., 1995. TR sequence–the practical genetic unit for stratigraphic analysis, Proceedings of the Oil and Gas Forum ‘95. Geological Survey of Canada, Open File, 187-192.
Embry, A.F., 1993. Transgressive-regressive (T-R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago. Canadian Journal of Earth Sciences, 30: 301-320.
Embry, A.F., Klovan, J.E., 1971. A late Devonian reef tract on northeastern Banks Island, NWT. Bulletin of Canadian petroleum geology, 19: 730-781.
Enayati-Bidgoli, A., Navidtalab, A., 2020. Effects of progressive dolomitization on reservoir evolution: A case from the Permian–Triassic gas reservoirs of the Persian Gulf, offshore Iran. Marine and Petroleum Geology, 119: 104480.
Ehrenberg, S.N., Nadeau P.H., Aqrawi, A.A.M., 2007. A comparison of Khuff and Arab reservoir potential throughout the Middle East. AAPG Bulletinm, 86: 1709-1732.
Ehrenberg, S.N., Pickard, N.A.H., Svana, T.A., Oxtoby, N.H., 2002. Cement geochemistry of photozoan carbonate strata (Upper Carboniferous-Lower Permian), Finnmark carbonate platform, Brents Sea. Journal of Sedimentary Research, 72: 95-115.
Flügel, E., 2010. Microfacies of Carbonate Rocks, 2 ed. Springer-Verlag Berlin Heidelberg, 976 p.
Fantle, M.S., Barnes, B.D., Kimberly, V.L., 2020. The Role of Diagenesis in Shaping the Geochemistry of the Marine Carbonate Record. Annual Review of Earth and Planetary Sciences, 48: 549-583.
Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Co, Austin, Texas, 182 p. Gharechelou, S., Amini, A., Bohloli, B., Swennen, R., 2020. Relationship between the sedimentary microfacies and geomechanical behavior of the Asmari Formation carbonates, southwestern Iran. Marine and Petroleum Geology, 116: 104306.
Haq, B. U., 1991. Sequence stratigraphy, sea level change and significance for the deep sea. Sedimentation, Tectonics and Eustasy: Sea‐Level Changes at Active Margins, 12: 1-39.
Haq, B. U., 2014. Cretaceous eustasy revisited. Global and Planetary Change, 113: 44-58.
Haywood, A. M., Valdes, P. J., Aze, T., Barlow, N., Burke, A., Dolan, A. M., Von Der Heydt, A., Hill, D. J., Jamieson, S., Otto-Bliesner, B. L., 2019. What can Palaeoclimate Modelling do for you? Earth Systems and Environment, 3: 1-18.
Heimhofer, U., Wucherpfennig, N., Adatte, T., Schouten, S., Schneebeli-Hermann, E., Gardin, S., Keller, G., Kentsch, S., Kujau, A., 2018. Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2. Nature Communications, 9: 3832.
Henehan, M.J., Hull, P.M., Penman, D.E., Rae, J.W., Schmidt, D.N., 2016. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Philosophical Transactions of the Royal Society B: Biological Sciences, 371: 20150510.
Henehan, M.J., Ridgwell, A., Thomas, E., Zhang, S., Alegret, L., Schmidt, D.N., Rae, J.W., Witts, J.D., Landman, N.H., Greene, S.E., 2019. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proceedings of the National Academy of Sciences, 116: 22500-22504.
Hood, S.D., Nelson C.S. and Kamp P.J.J., 2004. Burial dolomitisation in a non-tropical carbonate petroleum reservoir: the Oligocene Tikorangi Formation, Taranaki Basin, New Zealand: Sedimentary Geology, 172: 117-138.
Hull, P.M., Bornemann, A., Penman, D.E., Henehan, M.J., Norris, R.D., Wilson, P.A., Blum, P., Alegret, L., Batenburg, S.J., Bown, P.R., 2020. On impact and volcanism across the Cretaceous- Paleogene boundary. Science, 367: 266-272.
Jalilian, M., Afsharian Zadeh, A.M., Ghomashi, A., 1992. Kiasar map, Geological map of Iran 1:100000 series. Tehran Naqsheh, Geological Survey of Iran, Tehran, Iran.
James N. P. and Jones B., 2016. Origin of Carbonate Sedimentary Rocks, Department of Earth and Atmospheric, Sciences University of Alberta Canada, 464 p.
Khalifa, M.A., El-Ghar, M.A., Al-Aasm, I., 2014. Linking carbonate cyclicity in platforms to Geopersia 2023, 13(2): 299-321 319
depositional and diagenetic overprints: an example from the Lower Eocene Drunka Formation, west of Assiut-Minia stretch, Western Desert, Egypt. Arabian Journal of Geosciences, 7: 5159-5170.
Kalanat, B., Vahidinia, M., Vaziri-Moghaddam, H., Mahmudy-Gharaie, M.H., 2015. A Cenomanian- Turonian drowning unconformity on the eastern part of Kopet-Dagh basin, NE Iran. Arabian Journal of Geosciences, 8: 8373-8384.
Kalanat, B., Vahidinia, M., Vaziri-Moghaddam, H., Mahmudy-Gharaie Mohamad, H., 2016. Planktonic foraminiferal turnover across the Cenomanian – Turonian boundary (OAE2) in the northeast of the Tethys realm, Kopet-Dagh Basin, Geologica Carpathica, 451 p.
Lasemi, Y., Jahani, D., Amin-Rasouli, H., Lasemi, Z., 2012. Ancient carbonate tidalites. In: Davis, R.A., Dalrymple, R.W. (Eds.),
 Principles of Tidal Sedimentology. Springer, Heidelberg, 567-607.
Leckie, R.M., Bralower, T.J., Cashman, R., 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17: 13-11.
Linzmeier, B.J., Jacobson, A.D., Sageman, B.B., Hurtgen, M.T., Ankney, M.E., Petersen, S.V., Tobin, T.S., Kitch, G.D., Wang, J., 2020. Calcium isotope evidence for environmental variability before and across the Cretaceous-Paleogene mass extinction. Geology, 48: 34-38.
Mehrabi, H., Rahimpour-Bonab, H., Hajikazemi, E., Jamalian, A., 2015. Controls on depositional facies in Upper Cretaceous carbonate reservoirs in the Zagros area and the Persian Gulf, Iran. Facies, 61, 23.
Miall A. D., 2016. Stratigraphy: A Modern Synthesis, Springer Verlag, Berlin/ Heidelberg, 454 p.
Miall, A. D., 2006. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology, Springer, New York, NY, USA, 582 p.
Miall, A.D., 2010, The Geology of Stratigraphic Sequences (2nd Edition): Springer- verlag, 522 p.
Miller, C.R., James, N.P., Bone, Y., 2012. Prolonged carbonate diagenesis under an evolving late cenozoic climate; Nullarbor Plain, southern Australia. Sedimentary Geology, 261: 33-49.
Morad, S., Ketzer, J.M., De Ros, L.F., 2013. Linking diagenesis to sequence stratigraphy: an integrated tool for understanding and predicting reservoir quality distribution. Linking Diagenesis to Sequence Stratigraphy. Special Publication of the International Association of Sedimentologists, 45: 1-36.
Moghadam, H.S., Stern, R.J., 2021. Subduction initiation causes broad upper plate extension: The Late Cretaceous Iran example. Lithos, 398: 106296.
Moghadam, H.S., Stern, R.J., Griffin, W., Khedr, M., Kirchenbaur, M., Ottley, C., Whattam, S., Kimura,J.-I., Ghorbani, G., Gain, S., 2020. Subduction initiation and back-arc opening north of Neo-Tethys: Evidence from the Late Cretaceous Torbat-e-Heydarieh ophiolite of NE Iran. GSA Bulletin, 132: 1083-1105.
Navidtalab, A., Rahimpour-Bonab, H., Huck, S., Heimhofer, U., 2016. Elemental geochemistry and strontium-isotope stratigraphy of Cenomanian to Santonian neritic carbonates in the Zagros Basin, Iran. Sedimentary Geology, 346: 35-48.
Navidtalab, A., Sarfi, M., Enayati-Bidgoli, A., Yazdi-Moghadam, M., 2020. Syn-depositional continental rifting of the Southeastern Neo-Tethys margin during the Albian–Cenomanian: evidence from stratigraphic correlation. International Geology Review, 62: 1698–1723.
Nascimento, G.S., Eglinton, T.I., Haghipour, N., Albuquerque, A.L., Bahniuk, A., McKenzie, J.A., Vasconcelos, C., 2019. Oceanographic and sedimentological influences on carbonate geochemistry and mineralogy in hypersaline coastal lagoons, Rio de Janeiro state, Brazil. Limnology and Oceanography, 6: 2605-2620.
Okazaki, K., Noda, H., Uehara, S., Shimamoto, T., 2014. Permeability, porosity and pore geometry evolution during compaction of Neogene sedimentary rocks. Journal of Structural Geology, 62: 1– 12.
Okubo, J., Lykawka, R., Lucas Veríssimo Warren, L.V., Favoreto, J., Dias-Brito, D., 2015. Depositional, diagenetic and stratigraphic aspects of Macaé Group carbonates (Albian): example from an oilfield from Campos Basin. Brazilian Journal of Geology, 45: 243-258.
Passier H.F., Middelburg J.J., de Lange G.J., Bottcher M.E. 1997. Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel. Geology, 25: 519-522.
Pomar, L., 2001. Types of Carbonate Platforms: A Genetic Approach. Wiley, 13: 313-334.
Purser, B.H., 1978. Early diagenesis and the preservation of porosity in Jurassic limestones. Journal of Petroleum Geology, 1: 83-94. 320 Parimi et al.
Piryaei, A., Reijmer, J.J.G., Borgomano, J., van Buchem, F.S.P., 2011. Late cretaceous tectonic and sedimentary evolution of the bandar abbas area, fars region, southern Iran. Journal of Petroleum Geology, 34: 157-180.
Piryaei, A., Reijmer, J.J.G., van Buchem, F.S.P., Yazdi-Moghadam, M., Sadouni, J., Danelian, T., 2010. The influence of Late Cretaceous tectonic processes on sedimentation patterns along the northeastern Arabian plate margin (Fars Province, SW Iran), Geological Society Special Publication, 211-251.
Sahraeyan, M., Bahrami, M., Arzaghi, S., 2013. Facies analysis and depositional environments of the Oligocene Miocene Asmari Formation, Zagros Basin, Iran, southwestern Iran. Journal of Geoscience Frontiers, 5: 103-112.
Sahraeyan, M., Bahrami, M., Hooshmand, M., Ghazi, Sh., & Al- Juboury, A.I., 2013. Sedimentary facies and diagenetic features of the Early Cretaceous Fahliyan Formation in the Zagros Fold- Thrust Belt, Iran. Journal of African Earth Sciences, 87: 59-70
Sardar, H.A., Tamar-Agha, M.Y., 2017. Sedimentology and stratigraphy of Geli Khana Formation (Anisian-Ladinian), a contourite depositional system in the northeastern passive margin of Arabian plate, northern Iraq-Kurdistan region. Arabian Journal of Geosciences, 10 (5): 118.
Sarg, J.F., 1988. Carbonate sequence stratigraphy. In: sea level changes – an integrated approach (Eds C.K. Wilgus, B.S. Hastings, C.G.St.C. Kendall, H.S. Posamentier, C.A. Ross and J.C.Van Wagoner), SEPM Special Publication, 42: 155–182.
Scholle, P.A., Ulmer-Scholle, D.S., 2006. A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis. American Association of Petroleum Geologists Bulletin, 459 p.
Sharland, P.R., D.M. Casey, R.B. Davies, M.D. Simmons, and O.E. Sutcliffe, 2004. Chrono-Sequence stratigraphy of the Arabia plate: Arabian Plate Sequence Stratigraphy: Geo Arabia, 9: 16- 34.
Stocklin, J., 1974. Northern Iran: Alborz Mountains. Mesozoic-Cenozoic orogenic Belt, data for orogenic studies; Geol. Soc. London, 4: 213-234
Scotese, C., 2014. Atlas of Late Cretaceous paleogeographic maps, PALEOMAP atlas for ArcGIS, volume 2, The Cretaceous, Maps 16–22, Mollweide Projection.
Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Heward, A.P., Horbury, A.D., Simmons, M.D., 2001. Arabian plate sequence stratigraphy. GeoArabia, 2: 1-371.
Steuber, T., 1994. New rudists (radiolitidae) from the upper cretaceous of boeotia, central greece. Paläontologische Zeitschrift, 68: 43-62.
Steuber, T., 2000. Skeletal growth rates of Upper Cretaceous rudist bivalves: Implications for carbonate production and organism-environment feedbacks, Geological Society Special Publication, 21-32.
Steuber, T., 2002. Plate tectonic control on the evolution of Cretaceous platform-carbonate production. Geology, 30: 259-262.
Taylor K.G., Macquaker, J.H.S., 2000. Early diagenetic pyrite morphology in a mudstone-dominated succession: the Lower Jurassic Clevland Ironstone Formation, eastern England. Sedimentary Geology, 131: 77-86.
Tierney, J.E., Poulsen, C.J., Montañez, I.P., Bhattacharya, T., Feng, R., Ford, H.L., Hönisch, B., Inglis, G.N., Petersen, S.V., Sagoo, N., 2020. Past climates inform our future. Science, 370: 3701.
Tucker, M.E., 2001. Sedimentary petrology: an introduction to the origin of sedimentary rocks, 3rd ed. Wiley-Blackwell, 612 p.
Tucker, M.E., 2003. Sedimentary Petrology: Thired edition, Blackwell, Oxford, 260 p.
Tucker, M.E., Wright, V.P., 1990. Carbonate sedimentology. Blackwell, Oxford, 482 p.
van Buchem, F.S.P., Gaumet, F., Vedrenne, V., Vincent, B., 2006. Middle East Cretaceous Sequence Stratigraphy Study, Part 1: Iran. NIOC and IFP, Iran.
van Buchem, F.S.P., Simmons, M.D., Droste, H.J., Davies, R.B., 2011. Late Aptian to Turonian stratigraphy of the eastern Arabian Plate - depositional sequences and lithostratigraphic nomenclature. Petroleum Geoscience, 17: 211-222.
Vail, P., Audemard, F., Bowman, S., Eisner, P., 1991. The stratigraphic signatures of tectonics, eustasy and sedimentology-an overview. In: Einsele, G., Ricken, W. and Seilacher, A. (Ed.), Cycles and Events in stratigraphy, Berlin, Heidlberg: Springer-Verlag, 659-617.
Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Vail, P.R., Sarg, J.F., Loutit, T.S. Hardenbol, J., 1988. An Overview of the Fundamentals of Sequence Stratigraphy and Key Definitions. In: Wilgus, C.K., Ross, C.A., Kendall, C.G.St.C., Posamentier, H.W., Van Wagoner, J.C., (Eds): SeaGeopersia 2023, 13(2): 299-321 321 Level Changes: An Integrated Approach. SEPM Special Publication, 42: 39-45.
Vial, P.R., F. Audemard, S. Bowman, P. Einsel, and C. Perez- Crus, 1991. The stratigraphic signatures of tectonics, eustasy and sedimentology- an overview In: Einsel, G., Ricken, W., Seilacher, A., Cycles and events in stratigraphy: Springer- verlag, Berlin Heidelberg New Yourk, 617-659.
Wu, G., Xie, E., Zhang, Y., Qing, H., Luo, X., Sun, C., 2019. Structural diagenesis in carbonate rocks as identified in fault damage zones in the northern Tarim Basin, NW China. Minerals, 9(6): 1-15.
Zarza A.M., L.H. Tanner., 2010. Carbonates in Continental Settings Geochemistry Diagenesis an applications, Elsevier, 319 p.