Evaluation of thermal decomposition of calcite in the fault zone, a case study of the Astana fault

Document Type : Research Paper

Authors

Department of geology, Faculty of science, Ferdowsi University of Mashhad, Iran

Abstract

Abstract

Astaneh fault is one of the active and seismic faults in the southern part of eastern Alborz. Performance of seismic faults in carbonate rocks and favorable conditions causes the change in calcite and its conversion to lime or its thermal decomposition. If the environment is suitable for this deformation, after initial deformation, the primal volume is reduced, leaving the space available for depletion between deformed particles, which can be used as a key for this earthquake slip. During the Astaneh fault at the location where the fault occurred in the carbonates, after sampling the fault core and fault gouge, and photographing and studying them by SEM electron microscopy, the presence of Co2 exit bubbles and the reduction of calcite volume caused by the earthquake slip heat created was observed at the nanoscale and micro level. After observing the thermal decomposition of calcite in the gouge fault, the reduced volume of particles was calculated from the earthquake slip heat. With the proportion between this volume reduction and the temperature causing it the temperature resulting from the seismic slip causing this deformation is estimated for the sampling location and fault surface.

Keywords: Astaneh fault, Earthquake slip, thermal decomposition of calcite, Fault gouge, volume reduction

Keywords

Main Subjects


Article Title [Persian]

-

Alejandro, J., Vicente R., Miguel A. V., 2022. Thermal study of the hydrocalumite-katoite-Calcium Carbonate (CaCo3) system. Journal of Thermochimica Acta, 713 (2022) 179242.
Allen, J.L., 2005. A multi-kilometer pseudotachylyte system as an exhumed record of earthquake rupture geometry at hypocentral depth (Colorado, USA). Journal of Tectonophysics, 402: 37-54.
Boullier, A‐M., Yeh, E‐C., Boutareaud, S., Song, S‐R., Tsai, C‐H., 2009. Microscale anatomy of the 1999 Chi‐Chi earthquake fault zone. Journal of Geochemistry Geophysics Geosystems, 10(3): 1-25.
Brantut, N., Schubnel, A., Rouzaud, J‐N., Brunet, F., Shimamoto, T., 2008. High‐velocity frictional properties of a clay‐bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research: Solid Earth, 11: 1-18.
Bullock, R.J., De Paola, N., Holdsworth, R.E., 2015. An experimental investigation into the role of phyllosilicate content on earthquake propagation during seismic slip in carbonate faults. Journal of Geophysical Research: Solid Earth, 120: 3187-3207.
Camacho, A., Vernon, R.H., Fitz Gerald, J.D., 1995. Large volumes of anhydrous pseudotachylyte in the Woodroffe Thrust, eastern Musgrave Ranges, Australia. Journal of Structural Geology, 17: 371-38.
Chong, C., Specht, E., 2006. Reaction rate coefficients in decomposition of lumpy Calcium Oxide (CaO)stone of different origin. Journal of Thermochimica Acta, 449: 8-15.
Collettini, C., Viti, C., Tesei, T., Mollo, S., 2013. Thermal decomposition along natural faults during earthquakes. Journal of Geology, 41(8): 927-930.
Cowan, D.S., 1999. Do faults preserve a record of seismic slip? A field geologist’s opinion. Journal of Structural Geology, 21: 995-1001.
Delle piane, C., Clennell, M., Keller,J., Giwelli, A., Luzin, V., 2017. Carbonate hosted fault rocks: A review of structural and microstructural characteristics with implications for seismicity in the upper crust. Journal of Structural Geology, 103:17-36.
De Paola, N., Hirose, T., Mitchell, T., Di Toro, G., Viti, C., Shimamoto, T., 2011. Fault lubrication and earthquake propagation in thermally unstable rocks. Journal of Geology, 39: 25-38.
Di Toro, G., Pennacchioni, G., Teza, G., 2005a. Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults. Journal of Tectonophysics, 402: 3-2.
Di Toro, G., Pennacchioni, G., 2005b. Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites (Adamello batholith, Southern Alps). Journal of Tectonophysics, 402:55-80.
Di Toro, G., Takehiro, H., Stefan, N., Giorgio, P., Toshihiko, S., 2006. Natural and Experimental Evidence of Melt Lubrication of Faults During Earthquakes. Journal of Science, 311: 647-649.
Di Toro, G., Pennacchioni, G., Nielsen, S., Eiichi, F., 2009. Pseudotachylytes and earthquake source mechanics, in Fault-zone Properties and Earthquake Rupture Dynamics. Journal of International Geophysics, 94: 87-133.
Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J., Withjack, M.O, 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32: 1557-1575.
Ferraro,F., Stefano Grieco,D., Agosta,F., Prosser,G, 2018. Space-time evolution of cataclasis in carbonate fault zones. Journal of Structural Geology, 110: 45-64.
Han, R., Hirose, T., Shimamoto, T., 2010. Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. Journal of Geophysical Research, 115: 1-23.
Hirono, T., Yokoyama, T., Hamada, Y., Tanikawa, W., Mishima, T., Ikehara, M., Famin, V., Tanimizu, M., Lin, W., Soh, W., Song, S., 2007. A chemical kinetic approach to estimate dynamic shear stress during the 1999 Taiwan Chi-Chi earthquake. Journal of Geophysical Research Letters, 34: 1-6.
Hollingsworth, J., Nazari, H., Ritz, J. F., Salamati, R., Talebian, M., Bahroudi, A., Walker, R.T., Rizza, M., Jackson, J., 2010. Active tectonics of the east Alborz mountains, NE Iran: Rupture of the left lateral Astaneh fault system during the great 856 A.D. Qumis earthquake. Journal of Geophysical Research, 115: 1-19.
Hurst, H.J., 1991. The thermal decomposition of magnesite in nitrogen. Journal of Thermochimica Acta, 189: 91-96.
Jackson, J., Priestly, K., Allen, M., Berberian, M., 2002. Active tectonics of the South Caspian Basin. Journal of Geophysical Journal International ,148: 214-245.
Janssen, C., Wirth, R., Lin, A., Dresen, G., 2013. TEM microstructural analysis in a fault gouge sample of the Nojima Fault Zone, Japan. Journal of Tectonophysics, 583: 101-104.
Kohobhange, S.P., Karunadasa, H., Manoratne, H.M., Pitawala, T.G.A., Rajapakse, R.M.G., 2019. Thermal decomposition of Calcium Carbonate (CaCo3) (Calcium Carbonate (CaCo3) polymorph) as examined by in-situ high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of Solids, 134: 21-28.
Kuo, L-W., Song, S-R., Huang, L., Yeh, E-C., and Chen, H-F., 2011. Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan. Journal of Tectonophysics, 502: 315-327.
Laurich, B., Urai, J.L., Desbois, G., Vollmer, C., and Nussbaum, C., 2014. Microstructural evolution of an incipient fault zone in Opalinus Clay: Insights from an optical and electron microscopic study of ion-beam polished samples from the Main Fault in the Mt-Terri Underground Research Laboratory. Journal of Structural Geology, 67: 107-128.
Lin, A., 2008. Fossil Earthquakes: The Formation and Preservation of Pseudotachylytes. Springer-Verlag Berlin, Heidelberg, New York: Springer, 348 pages.
Lin, A., 2019. Thermal pressurization and fluidization of pulverized cataclastic rocks formed in seismogenic fault zones. Journal of Structural Geology, 125: 278-284.
L’vov, B.L., 2002. Mechanism and kinetics of thermal decomposition of carbonates. Journal of Thermochimica Acta, 386: 1- 16.
McKenzie, D., Brune, J.N., 1972. Melting on Fault Planes During Large Earthquakes. Journal of Geophysical Journal of the Royal Astronomical Society, 29: 65-78.
Ming, Z., Long, Y., Weichao, L., Zhengbo, W., Chenyang, Z., Qian, C., Bo, W., 2022. Frictional properties of the rupture surface of a carbonate rock avalanche. International Journal of Rock Mechanics and Mining Sciences Volume, 153:105088.
Mohamed, M., Yusup, S., Maitra, S., 2012. Decomposition study of Calcium Carbonate (CaCo3) in the cockle shell. Journal of Engineering Science and Technology, 7: 1-10.
Nazari, H., 2006. Analyse de la tectonique récente et active dans l'Alborz Central et la région de Téhéran: Approche morphotectonique et paleoseismologique. Science de la terre et de l'eau. Ph.D. thesis. University of Montpellier2, pp: 247 (in France).
Nemati, M., Hatzfeld, D., Gheitanchi, M.R., Sadidkhouy, A., Mirzaei, N., and Moradi, A., 2012. Investigation of seismicity of the Astaneh Fault in the East Alborz. Journal of Earth and Space Physics, 37(2): 1-16.
Nobari, A.H., Halali, M., 2006. An investigation on the calcination kinetics of zinc carbonate hydroxide and Calsimin zinc carbonate concentrate. Chemical Engineering Journal, 121(2-3): 79-84.
Rahimi, B., 2002. Structural Study of Alborz Range in North Damghan, Ph.D. thesis. University of the shahid Beheshti, Iran, pp.232 (in Persian).
Rizza, M., Mahan, S., Ritz, J-F., Nazari, H., Hollingsworth, J., Salamati, R.,2011. Using luminescence dating of coarse matrix material to estimate the slip rate of the Astaneh fault, Iran. Quaternary Geochronology, 6:390-406.
Rowe, C.D., Fagereng, A., Miller, J.A., Mapani, B., 2012. Signature of coseismic decarbonation in dolomitic fault rocks of the Naukluft Thrust, Namibia. Earth and Planetary Science Letters, 333-334: 200-210.
Scholz, C. H., 2002. The Mechanics of Earthquakes and Faulting, Cambridge University. Cambridge University Press, pp:471.
Sibson, R.H., 1975. Generation of pseudotachylyte by ancient seismic faulting, Geophysical. Journal of the Royal Astronomical Society, 43: 775-794.
Sibson, R.H., Toy, V.G., 2006. The habitat of fault-generated pseudotachylyte: Presence vs. absence of friction-melt. Published Online: 18 March 2013 Published Print: 01 January 2006. AGU (American Geophysical Union) Monograph, 170: 153-166.
Smith, S.A.F., Di Toro, G., Kim, S., Ree, J-H., Nielsen, S., Billi, A., Spiess, R., 2013. Coseismic recrystallization during shallow earthquake slip. Journal of Geology, 41: 63-66.
Stanmore, B.R., Gilot, p., 2005. Review: Calcination and carbonation of Calcium Oxide (CaO)stone during thermal cycling for CO2 sequestration. Journal of Fuel Processing Technology, 86: 1707-1743.
Sulem, J., Famin, V., 2009. Thermal decomposition of carbonates in fault zones: slip weakening and temperature-limiting effects. Journal of Geophysical Research: Solid Earth, 114: 1-14.
Todor, D. N., 1976. Thermal Analysis of Minerals. Abacus Press, Published online by Cambridge University Press 2018 , 256 pp.
Ünal-Imer, E., Uysal, I.T., Zhao, J-X., Is ık, V., Shulmeister, J., Imer, A., Feng, Y-X, 2016. CO2 outburst events in relation to seismicity: constraints from microscale geochronology, geochemistry of late Quaternary vein carbonates, SW Turkey. Journal of Geochimica et Cosmochimica Acta, 187: 21-40.
Valoroso, L., Chiaraluce, L., Collettin, C., 2014. Earthquakes and fault zone structure. Journal of Geology, 42(4): 1-5.
Wiley, J., 1999. Chemical reaction engineering. (3rd Ed.), Levienspiel New York.