U-Pb Geochronological and Geochemical Characteristics of the Kalate-Naser Intrusive Rocks, Eastern Lut, Iran

Document Type : Research Paper

Authors

1 Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Petroleum Engineering and Geology, Mashhad Branch, Islamic Azad University, Mashhad, Iran

3 Department of Geological Sciences, University of Cape Town, South Africa

Abstract

The Kalateh-Naser area is located in the northeast of the Lut block (Eastern Iran). The rock units of the region generally include Cretaceous limestone units and metamorphosed carbonate rocks. Intrusive rocks emplaced in the study area are mainly composed of quartz monzonite, monzodiorite, quartz diorite, and granodiorite. These rocks are typically I-type with strongly metaluminous signatures. Dating using the zircon U-Pb method on two intrusive rocks revealed ages between 104.23 ± 0.85 Ma and 102.13 ± 0.91 Ma. Rb-Sr and Sm-Nd isotopic data yield mantle derived magma modified by the addition of crustal materials, as shown by initial 87Sr/86Sr ratios (0.7049 - 0.7051) and 143Nd/144Nd ratios (0.512697 - 0.512796). The geochemical compositions indicate enrichment of LILE compared to HFSE with (La/Yb)N values of 2.61–8.43. The LREE versus HREE ratios, as well as depletion of Nb, Ta and Ti elements in these intrusive rocks represent the characteristics of the rocks belonging to the subduction zone. The subduction characteristics of these rocks can be attributed to the subduction inherited in this part of eastern Iran. The whole-rock geochemistry combined with the Nd and Sr isotopic data and similar ages suggest that quartz monzonite and granodiorite are more likely co-magmatic and fall in VAG category. Comparing isotopic composition variations of the Kalateh-Naser rocks with other intrusive rocks from the Lut block, indicates a heterogeneous mantle beneath the Lut block and different amount of the metasomatized mantle source in eastern Iran.

Keywords

Main Subjects


Article Title [Persian]

-

Abdi, M., Karimpour, M.H., 2013. Petrochemical Characteristics and Timing of Middle Eocene Granitic
Magmatism in Kooh‐Shah, Lut Block, Eastern Iran. Acta Geologica Sinica‐English Edition,
87:1032-1044.
Ahmadirouhani, R., Karimpour, M.H., Rahimi, B., Malekzadeh-Shafaroudi, A., Klotzli, U., Santos, J.F.,
2017. Petrology, geochronology, geochemistry and petrogenesis of Bajestan granitoids, North of
Ferdows, Khorasan Razvi Province. Journal of Economic Geology, 8:525-552. (in Persian with
English abstract)
Arjmandzadeh, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F., Medina, J.M., Homam, S.M., 2011.
Sr–Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut block, eastern
Iran). Journal of Asian Earth Sciences, 41: 283-296.
Arjmandzadeh, R., Santos, J.F., 2014. Sr–Nd isotope geochemistry and tectonomagmatic setting of the
Dehsalm Cu–Mo porphyry mineralizing intrusives from Lut Block, eastern Iran. International
Journal of Earth Sciences, 103: 123-140.
Baumann, A., Spies, O., Lensch, G., 1984. Strontium isotopic composition of post-ophiolitic Tertiary
volcanics between Kashmar, Sabzevar and Quchan/NE Iran. Neues Jahrbuch für Geologie und
Paläontologie-Abhandlungen, 409-416.
Berberian, M., King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran: Reply.
Canadian Journal of Earth Sciences, 18: 1764-1766.
Boynton, W.V, 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson, P.
(Ed.), Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114.
Chappell, B.W., Bryant, C.J. and Wyborn, D., 2012. Peraluminous I-type granites. Lithos, 153:142-153.
Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific Geology, 8:173-174.
Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young
subducted lithosphere. Nature, 347: 662-665.
Esmaeily, D., 2001. Petrologyand geochronologyof Shah-Kuh granite with special references to tin
mineralization. Ph.D. thesis, University of Tarbiat-Modarres, Tehran, 296 p. (in Persian with English
abstract)
Esmaeily, D., Nédélec, A., Valizadeh, M.V., Moore, F., Cotten, J., 2005. Petrology of the Jurassic Shah-
Kuh granite (eastern Iran), with reference to tin mineralization. Journal of Asian Earth Sciences,
25:961-980.
Hoskin, P.W.O., Kinny, P.D., Wyborn, D., Chappell, B.W., 2000. Identifying accessory mineral
saturation during differentiation in granitoid magmas: An integrated approach. Journal of Petrology,
41:1365–1395.
Hart, S.R., 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth
and Planetary Science Letters, 90: 273-296.
Jung, D., Keller, J., Khorasani, R., Marcks, C., Baumann, A., Horn, P., 1983. Petrology of the Tertiary
182 Mazhari et al.
magmatic activity the northern Lut area, East of Iran. Ministry of Mines and Metals, GSI,
Geodynamic Project (Geotraverse) in Iran 51:285-336.
Karimpour, M.H., Malekzadeh-Shafaroudi, A., Moradi Noghondar, M., Farmer, G.L., Stern, C.R., 2014.
Geology, mineralization, Rb-Sr & Sm-Nd geochemistry, and U–Pb zircon geochronology of Kalateh
Ahani Cretaceous intrusive rocks, southeast Gonabad. Journal of Economic Geology, 5:267-290. (in
Persian with English abstract)
Karimpour, M.H., Stern, C., Farmer, L., Saadat, S., 2011. Review of age, Rb-Sr geochemistry and
petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, Eastern Iran. Geopersia, 1:19-54.
Karsli, O., Dokuz, A., Uysal, I., Aydin, F., Chen, B., Kandemir, R., Wijbrans, J., 2010. Relative
contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids
in a subduction setting, with special reference to the Harsit Pluton, Eastern Turkey. Contributions to
Mineralogy and Petrology, 160: 467-487.
Kretz, R., 1983. Symbols for rock-forming minerals. American mineralogist, 68: 277-279.
Kuşcu, I., Kuşcu, G.G., Meinert, L.D., Floyd, P.A., 2002. Tectonic setting and petrogenesis of the Çelebi
granitoid (Kırıkkale-Turkey) and comparison with world skarn granitoids. Journal of Geochemical
Exploration, 76: 175-194.
Li, Y.B., Kimura, J.I., Machida, S., Ishii, T., Ishiwatari, A., Maruyama, S., Qiu, H.N., Ishikawa, T.,
Kato, Y., Haraguchi, S., Takahata, N., 2013. High-Mg adakite and low-Ca boninite from a Bonin
fore-arc seamount: implications for the reaction between slab melts and depleted mantle. Journal of
Petrology, 54:1149-1175.
Ling, Q.C., Liu, C.Q., 2002. Behavior of the REEs and other trace elements during fluid-rock interaction
related to ore-forming processes of the Yinshan transitional deposit in China. Geochemical Journal,
36:443-463.
López-Moro, F.J., López-Plaza, M., Romer, R.L., 2012. Generation and emplacement of shear-related
highly mobile crustal melts: the synkinematic leucogranites from the Variscan Tormes Dome,
Western Spain. International Journal of Earth Sciences, 101: 1273-1298.
Magna, T., Janoušek, V., Kohút, M., Oberli, F., Wiechert, U., 2010. Fingerprinting sources of orogenic
plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin
of some A-type granites. Chemical Geology, 274(1-2):94-107.
Mahdavi, A., Karimpour, M.H., Mao, J., Heidarian Shahri, M.R., Malekzadeh-Shafaroudi, A., Li, H.,
2016. Zircon U–Pb geochronology, Hf isotopes and geochemistry of intrusive rocks in the Gazu
copper deposit, Iran: Petrogenesis and geological implications. Ore Geology Reviews, 72: 818-837.
Malekzadeh, A.M., Karimpour, M.H., Stern, C.R., 2015. The Khopik porphyry copper prospect, Lut
Block, Eastern Iran: geology, alteration and mineralization, fluid inclusion, and oxygen isotope
studies. Ore Geology Reviews, 65: 522-544.
Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological society of America
bulletin, 101: 635-643.
Manya, S., Maboko, M.A., 2016. Generation of Palaeoproterozoic tonalites and associated high-K
granites in southwestern Tanzania by partial melting of underplated mafic crust in an intracontinental
setting: Constraints from geochemical and isotopic data. Lithos, 260: 120-133.
Martin, H., 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46: 411-429.
Middlemost, E.A., 1994. Naming materials in the magma/igneous rock system. Earth-science reviews,
37: 215-224.
Miller, J.S., Glazner, A.F., Farmer, G.L., Suayah, I.B., Keith, L.A., 2000. A Sr, Nd, and Pb isotopic
study of mantle domains and crustal structure from Miocene volcanic rocks in the Mojave Desert,
California. Geological Society of America Bulletin, 112: 1264-1279.
Miri-Beydokhti, R.M., Karimpour, M.H., Mazaheri, S.A., Santos, J.F., Klötzli, U., 2015. U–Pb zircon
geochronology, Sr–Nd geochemistry, petrogenesis and tectonic setting of Mahoor granitoid rocks
(Lut Block, Eastern Iran). Journal of Asian Earth Sciences, 111: 192-205.
Nagudi, B., Koeberl, C., Kurat, G., 2003. Petrography and geochemistry of the Singo granite, Uganda,
and implications for its origin. Journal of African Earth Sciences, 36:73-87.
Najafi, A., Karimpour, M.H., Ghaderi, M., Stern, C.R., Farmer, J.L., 2014. Zircon U–Pb geochronology,
isotope geochemistry of Rb–Sr and Sm–Nd and petrogenesis of granitoid intrusive rocks in Kajeh
exploration area, northwest of Ferdows: evidence for Late Cretaceous magmatism in the Lut block.
Journal of Economic Geology, 6: 107-135. (in Persian with English abstract).
Geopersia 2023, 13(1): 167-184 183
Nakhaei, M., Mazaheri, S.A., Karimpour, M.H., Stern, C.R., Zarrinkoub, M.H., Mohammadi, S.S.,
2015. Geochronologic, geochemical, and isotopic constraints on petrogenesis of the dioritic rocks
associated with Fe skarn in the Bisheh area, Eastern Iran. Arabian Journal of Geosciences, 8: 8481-
8495.
Nejatzadeh, M.J., Homam, M., Saadat, S., 2016. Geochemical studies of intrusive rocks of Kalateh
Naser area, southern Khorasan, in Proceedings, Iranian Society of Economic geology symposium,
9th, Birjand, Iran University of Birjand, p.1-8. (in Persian with English abstract).
Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y., Chu, C.H.,
Lee, H.Y., Lo, C.H., 2013. Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region,
eastern Iran: Magma genesis and tectonic implications. Lithos, 180: 234-251.
Patiño Douce, A.E., 1999. What do experiments tell us about relative contributions of crust and mantle
to the origin of granitic magmas?. In: Castro, A., Fernández, C., Vigneresse, J.L. (Eds.),
Understanding Granites: Integrating New and Classical Techniques. Geological Society of London
Special Publications, London, 168: 55-75.
Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite
classification and the search for Archean oceanic crust. Lithos, 100: 14-48.
Pearce, J.A., Harris, N.B., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic
interpretation of granitic rocks. Journal of petrology, 25: 956-983.
Pin, C., Gannoun, A., Dupont, A., 2014. Rapid, simultaneous separation of Sr, Pb, and Nd by extraction
chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS. Journal of
Analytical Atomic Spectrometry, 29: 1858-1870.
Rollinson, H.R., 1993, Using geochemical data: evaluation, presentation, interpretation: Harlow, Essex,
England: New York: Longman Scientific & Technical, 352 pp.
Rudnick, R.L., 1992. Restites, Eu anomalies and the lower continental crust. Geochimica et
Cosmochimica Acta, 56(3): 963-970.
Rudnick, R.L., Gao, S., 2014. Composition of the continental crust. Treatise on geochemistry.
Amestradam: Elsevier. 64: 1-64.
Saadat, S., 2016. Geology, Geochemistry and Ground Magnetic Survey on Kalateh Naser Iron Ore
Deposit, Khorasan Jonoubi Province. Journal of Economic Geology, 8: 593-607, (in Persian with
English abstract)
Saadat, S., Stern, C., 2016. Distribution and geochemical variations among paleogene volcanic rocks
from the north-central Lut block, eastern Iran. Iranian Journal of Earth Sciences, 8(1): 1-24.
Saadat, S., Stern, C.R., 2011. Petrochemistry and genesis of olivine basalts from small monogenetic
cones of Bazman stratovolcano, Makran arc, southeastern Iran. Lithos, 125: 607–619.
Saadat, S., Stern, C.R., 2012. Petrochemistry of a xenolith-bearing Neogene alkali olivine basalt from
northeastern Iran. Journal of Volcanology and Geothermal Research, 225: 13-29.
Saccani, E., Delavari, M., Beccaluva, L., Amini, S., 2010. Petrological and geochemical constraints on
the origin of the Nehbandan ophiolitic complex (eastern Iran). Implication for the evolution of the
Sistan Ocean. Lithos, 117: 209-228.
Samiee, S., Karimpour, M.H., Ghaderi, M., Heidarian Shahri, M.R., Klöetzli, U., Santos, J.F., 2016.
Petrogenesis of subvolcanic rocks from the Khunik prospecting area, south of Birjand, Iran:
Geochemical, Sr–Nd isotopic and U–Pb zircon constraints. Journal of Asian Earth Sciences, 115:
170-182.
Shahabpour, J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and
Neyriz. Journal of Asian Earth Sciences, 24: 405-417.
Shand, S.J., 1974. Eruptive rocks; their genesis, composition, classification, and their relation to ore
deposits, with a chapter on meteorites. Revised second edition, New York, Hafner Publishing
Company, 350 pp.
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications
for mantle composition and processes. Geological Society, London, Special Publications, 42: 313-
345.
Tanaka, T., et al., 2000. JNdi-1: a neodymium isotopic reference in consistency with LaJolla
neodymium. Chemical Geology, 168: 279-281.
Tarkian, M., Bock, W.D., Neumann, M., 1983. Geology and mineralogy of the Cu− Ni− Co− U ore
deposits at Talmessi and Meeskani, central Iran. Tschermaks mineralogische und petrographische
184 Mazhari et al.
Mitteilungen, 32: 111-133.
Taylor, S.R., McLennan, S.M., 1985. The continental crust: Its composition and evolution. Blackwell
Scientific Publications, 312 pp.
Thompson, R.N., Dickin, A.P., Gibson, I.L., Morrison, M.A., 1982. Elemental fingerprints of isotopic
contamination of Hebridean Palaeocene mantle-derived magmas by Archaean sial. Contributions to
Mineralogy and Petrology, 79(2): 159-168.
Tirrul, R., Bell, I.R., Griffis, R.J., Camp, V.E., 1983. The Sistan suture zone of eastern Iran. Geological
Society of America Bulletin, 94: 134-150.
Wang, G.C., Jiang, Y.H., Liu, Z., Ni, C.Y., Qing, L., Zhang, Q., Zhu, S.Q., 2016. Multiple origins for
the Middle Jurassic to Early Cretaceous high-K calc-alkaline I-type granites in northwestern Fujian
province, SE China and tectonic implications. Lithos, 246: 197-211.
Warmada, I.W., Soe, M.T., Sinomiya, J., Setijadji, L.D., Imai, A., Watanabe, K., 2005. Petrology and
geochemistry of intrusive rocks from Selogiri area, Central Java, Indonesia. In: Proceedings, Earth
Resources Engineering and Geological Engineering Symposium, 2nd, Bangkok, Thailand, pp.163-
169.
Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical characteristics,
discrimination and petrogenesis. Contributions to mineralogy and petrology, 95: 407-419.
Wilson, M., 1989. Igneous Petrogenesis: A global tectonic approach. Harper Collins Academic, 466 pp.
Zarrinkoub, M.H., Pang, K.N., Chung, S.L., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y., Lee, H.Y.,
2012. Zircon U–Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan
suture zone, eastern Iran. Lithos, 154: 392-405.
Zhang, K.J., Cai, J.X., Zhang, Y.X., Zhao, T.P., 2006. Eclogites from central Qiangtang, northern Tibet
(China) and tectonic implications. Earth and Planetary Science Letters, 245: 722-729.
Zhao, J.L., Qiu, J.S., Liu, L., Wang, R.Q., 2016. The Late Cretaceous I-and A-type granite association
of southeast China: Implications for the origin and evolution of post-collisional extensional
magmatism. Lithos, 240: 16-33.
Zhu, R.Z., Lai, S.C., Qin, J.F., Zhao, S.W., 2015. Early-Cretaceous highly fractionated I-type granites
from the northern Tengchong block, western Yunnan, SW China: Petrogenesis and tectonic
implications. Journal of Asian Earth Sciences, 100: 145-163.