Mineral chemistry and petrology of magmatic rocks from NW Takestan (NW Iran)

Document Type : Research Paper


1 Department of Geology, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran.

2 Department of Geology, Faculty of Science, Ferdowsi Univesity of Mashshad, Mashhad, Iran

3 Department of Geology, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.

4 Department of Geology, Faculty of Earth science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

5 Department of Geological Engineering, Earth Sciences Application and Research Center (YEBIM), Faculty of Engineering, Ankara University, Turkey


In northwest of the Takestan area (NW Iran), as a part of the western Alborz mountain belt, various plutonic (monzodiorite, quartz monzonite, granite, and alkali granite), volcanic (andesite, basalt, basaltic andesite, rhyolite, and dacite) and pyroclastic rocks (tuff, agglomerate, and ignimbrite) are hosted of Eocene age. Electron probe micro analyzing (EPMA) on clinopyroxene, orthopyroxene, biotite, and amphibole show that they are diopside to augite (Mg# = 0.6-0.8), enstatite (Mg# = 0.63-0.68), annite to phlogopite (Fe# = 0.15 - 0.3) and pargasite (Mg# = 0.6 - 0.8), respectively. The plagioclases havedifferent compositions with normal chemical zoning  from labradorite (in the basalts, An% = 40 - 60) to andesine (in the monzodiorite, An% = 27 - 50) to oligoclase (in the other rocks, An% = 13 - 38). All minerals are primary magmatic except for the alkali granite biotites that have low Ti contents which
indicate that they formed by re-equilibrium with a hydrothermal fluid. Chemical compositions of the clinopyroxene, biotite, and amphibole reveal that they crystallized from calc-alkaline magmas formed by subduction of Neo-Tethys oceanic crust beneath the Iran micro-plate. Geothermometry calculations based on the mineral compositions indicate ca. 880 to 980 °C for the basalts, 800 to 850 °C for the andesite and the dacite, 750 to 820 °C for the monzodiorites and the quartz monzonite, and 520 to 670 °C for the alkali granite. High Al contents of the plagioclases from the quartz monzonite and monzodiorite as well as Fe+3 contents of the biotites from the alkali granite show that they formed from oxidized magmas that were suitable for Cu porphyry systems. Propylitic and argillic alteration zones in the area confirm it.


Main Subjects

Article Title [Persian]


Abdel-Rahman, A., 1994. Nature of Biotite from Alkaline, Calc-alkaline, and Peraluminous Magmas.
Journal of Petrology, 35: 525-41
Afshooni, S.Z., Mirnejad, H., Esmaeily, D., Haroni, H.A., 2013. Mineral chemistry of hydrothermal
biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran. Ore
Geology Reviews, 54: 214-232
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B.,
Wortel, R., 2011. Zagros orogeny: A subduction-dominated process. Geology Magazine, 148: 692 - 725
Aghazadeh, M., Castro, A., Badrzadeh, Z., Vogt, K., 2011. Post-collisional polycyclic plutonism from
140 Sepahi et al.
the Zagros hinterland: The Shaivar Dagh plutonic complex, Alborz belt, Iran. Geological Magazine,
148: 980-1008
Alai Mahabadi, S. Fanoudi, M., 1992. Geological Map of Takestan Quadrangle. Geological Survey of
Iran. Scale 1:100000.
Amidi, S.M., Michel, R., 1985. Cenozoic magmatism of the Surk area (central Iran) stratigraphy,
petrography, geochemistry and their geodynamic implications. Geologie Alpine, 61: 1-16
Amidi, S.M., Emami, M.H., Michel, R., 1984. Alkali character of Eocene volcanism in the middle part
of central Iran and its geodynamic situation. Geologische Rundschau, 73: 917-932
Anderson, J.L., Smith, D.R., 1995. The effects of temperature and fO2 on the Al-in-hornblende
barometer. American Mineralogist, 80: 549-59
Annells, R.N., Arthurton, R.S., Bazely, R.A., Davis, R.G., 1975. Explanatory text of the Qazvin and
Rasht quadrangles map. Geological Survey of Iran. Scale 1:250000.
Ashrafi, N., Ahmad Jahangiri, A., Hasebec, N., Eby, G.N., 2019. Petrology, geochemistry and
geodynamic setting of Eocene-Oligocene alkaline intrusions from the Alborz-Azerbaijan magmatic
belt, NW Iran. Geochemistry, 78: 432-461
Asiabanha, A., Foden, J., 2012. Post-collisional transition from an extensional volcano-sedimentary
basin to a continental arc in the Alborz Ranges, N-Iran. Lithos, 148: 98-111
Asiabanha, A., Bardintzeff, J.M., Kananian, A., Rahimi, G., 2012. Post-Eocene volcanics of the Abazar
district, Qazvin, Iran: Mineralogical and geochemical evidence for a complex magmatic evolution.
Journal of Asian Earth Sciences, 45: 79-94
Asiabanha, A., Ghasemi, H., Meshkin, M., 2009. Paleogene continental-arc type volcanism in North
Qazvin, North Iran: facies analysis and geochemistry. Neues Jahrbuch für Mineralogie
Abhandlungen, 186: 201-214
Avanzinelli, R., Bindi, L., Menchetti, S., Conticelli, S., 2004. Crystallization and genesis of peralkaline
magmas from Pantelleria Volcano, Italy: an integrated petrological and crystal-chemical study.
Lithos, 73: 41-69
Barrière, M., Cotton, J., 1979. Biotites and associated minerals as markers of magmatic fractionation
and deuteric equilibration in granites. Contributions to Mineralogy and Petrology 70, 183-192
Beccaluva, L., Maccciotta, G., Piccardo, G.B., Zeda, O., 1989. Clinopyroxene composition of ophiolite
basalts as petrogenetic indicator. Chemical Geology, 77: 165-182
Berberian, F., Berberian, M., 1981. Tectono-plutonic episodes in Iran. In: Gupta, H.K., Delany, F.M.
(Eds.), Zagros Hindukush: Himalaya Geodynamic Evolution. American Geophysical Union, 5-32
Best, M.G., Christiansen, E.H., 2001. Igneous Petrology. Oxford Blackwell Science, 458 pp.
Bindi, L., Cellai, D., Melluso, L., Conticelli, S., Morra, V., Menchetti, S., 1999. Crystal chemistry of
clinopyroxene from alkaline undersaturated rocks of the Monte Vulture Volcano, Italy. Lithos 46:
Blundy, J.D., Holland, T.J.B., 1990. Calcic amphibole equilibria and a new amphibole-plagioclase
geothermometer. Contributions to Mineralogy and Petrolology 104: 208-24
Boomeri, M., Nakashima, K., Lentz, D.R., 2010. The Sarcheshmeh porphyry copper deposit, Kerman,
Iran: a mineralogical analysis of the igneous rocks and alteration zones including halogen element
systematics related to Cu mineralization processes. Ore Geology Reviews 38: 367-381
Castro, A., Aghazadeh, M., Badrzadeh, Z., Chichorro, M., 2013. Late Eocene-Oligocene post-collisional
monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma
generation from a metasomatized mantle source. Lithos 180-181: 109-127
Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M., Iizuka, Y., 2013. Zircon
U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and
Zagros orogeny. Lithos 162: 70-87
Danyushevsky, L.V., Sobolev, A.V., 1996. Ferric-ferrous ratio and oxygen fugacity calculations for
primitive mantle-derived melts: calibration of an empirical technique. Mineralogy and Petrology 57:
Deer, W.A. Howie, R.A., Zussman, J., 1991. An introduction to the rock forming minerals. Longman
Scientific Technical. 528 pp
Droop, G.T.R., 1987. A general equation for estimating Fe+3 concentrations in ferromagnesian silicates
and oxides from microprobe analyses using stoichiometric criteria. Mineral Magazine 51: 431-435
Foudazi, M., Sheikhi Karizaki, H., Gholipuor, M., 2015. Petrology and geochemistry of granitoid
Geopersia 2023, 13(1): 123-143 141
massifs in North West of Takstan. Scientific Quarterly of Earth Sciences 24(95), 21-28 (in Persian
with English abstract)
France, L., Koepke, J., Ildefonse, B., Cichy, S. B., Deschamps, F., 2010. Hydrous partial melting in the
sheeted dike complex at fast spreading ridges: experimental and natural observations. Contributions
to Mineralogy and Petrology 160: 683 -704.
Ghassemi, A., Dehnavi, R., Sarikhani, D., 2009. Geochemical and petrological characteristics of volcanic
rocks of zajkan, north-west of Iran. Journal of the Indian Academy of Geoscience 52: 19-24
Guest, B., Horton, B.K., Axen, G.J., Hassanzadeh, J., McIntosh, W.C., 2007. Middle to late Cenozoic
basin evolution in the western Alborz Mountains: Implications for the onset of collisional
deformation in northern Iran. Tectonics 11: 1-26
Hammarstrom, J.M. Zen, E., 1986. Aluminum in hornblende: An empirical igneous geobarometer.
American Mineralogist 71: 1297-313
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., Welch,
M.D., 2012. Nomenclature of the amphibole supergroup. American Mineralogist 97: 2031-2048
Holland, T., Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on
amphiboleplagioclase thermometry. Contributions to Mineralogy and Petrology 116: 433-47
Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H., Sisson, V.B., 1987. Confirmation of the
empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons.
American Mineralogist 72: 231-9
Johnson, M.C., Rutherford, M.J., 1989. Experimental calibration of the aluminum-in-hornblende
geobarometer with applicable to Long Valley Caldera (California) volcanic rocks. Geology 17: 837-41
Kazmin, V.G., Sbortshikov, I.M., Ricou, L.E., Zonenshain, L.P., Boulin, J., Knipper, A.L., 1986. Volcanic
belts as markers of the Mesozoic-Cenozoic active margin of Eurasia. Tectonophysics 123: 123-152
Klein, C., Hurlbut, C. S., 1985. Manual of mineralogy. John Wiley and Sons, 596 pp.
Le Bas, M.J., 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage.
American Journal of Science 260: 267-288
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C.,
Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V.,
Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L.,
Whittaker, E.J.W., Guo, Y., 1997. Nomenclature of amphiboles; Report of the Subcommittee on
Amphiboles of the International Mineralogical Association, Commission on New Minerals and
Mineral Names. American Mineralogist 82: 1019-1037
Leterrier, J. Maury, R.C. Thonon, P. Girard, D., Marchal, M., 1982. Clinopyroxene composition as a
method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary
Science. Letters 59: 139-154
Li, X., Chi, G., Zhou, Y., Deng, T., Zhang, J., 2017. Oxygen fugacity of Yanshanian granites in South
China and implications for metallogeny. Ore Geology Reviews 88: 690-701
Madanipour, S., Ehlers, T.A., Yassaghi, A., Rezaeian, M., Enkelmann, E., Bahroudi, A., 2013.
Synchronous deformation on the orogenic plateau margins, insights from the Arabia-Eurasia
collision. Tectonophysics 608: 440-451
Manoli, S., Molin, G., 1988. Crystallographic procedures in the study of experimental rocks: X-ray
singlecrystal structure refinement of clinopyroxene from Lunar 74275 high-pressure experimental
basalt. Mineralogy and petrology 39: 187-200
Mohajjel, M., Fergusson, C., 2014. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern
Iran. International Geology Review 56: 263-287
Moin-Vaziri, H., 2004. An introduction to magmatism in Iran. Kharazmi University publication. 440
pp. (in Persian).
Molina, J., Scarrow, J., Montero, P.G., Bea, F., 2009. High-Ti amphibole as a petrogenetic indicator of
magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basicultrabasic
magmatism of central Iberia. Contribution to Mineralogy and Petrology 158: 69-98
Moromito, N., Fabrices J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifer, F.A., Zussman, J., Akoi,
K., Gottardi, G., 1988. Nomeclature of pyroxenes. Mineralogical Magazine 52: 535-550
Nabatian, G., Jiang, S., Honarmand, M., Neubauer, F., 2015. Zircon U-Pb ages, geochemical and Sr-
Nd-Pb-Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW
Iran. Lithos 244: 43-58
142 Sepahi et al.
Nachit, H., Abderrahmane, I., El Hassan, A., Mohcine, B.O., 2005. Discrimination between primary
magmatic biotites, reequilibrated biotites and neoformed biotites. Geoscience 337: 1415-1420
Nisbet, E.G., Pearce, J.A., 1977. Clinopyroxene Composition in Mafic Lavas from Different Tectonic
Settings. Contributions to Mineralogy and Petrology, 63: 149-160
Omrani, H., Michaeli, R., Moazzen, M., 2013. Geochemistry and petrogenesis of the Gasht
peraluminous granite, western Alborz Mountains, Iran. Neues Jahrbuch für Geologie und
Paläontologie, 268: 175-189
Pazirandeh, M., 1973. Distribution of volcanic rocks in Iran and a preliminary discussion of their
relationship to tectonics. Bulletin Volcanologique, 37: 573-585
Putirka, K.D., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogical
Society of American, 69: 61-120
Rezaei, M., Zarasvandi, A., 2022. Combined Feldspar-Destructive Processes and Hypogene Sulfide
Mineralization in the Porphyry Copper Systems: Potentials for Geochemical Signals of Ore
Discovering. Iranian Journal of Science and Technology 46: 1413-1424
Richards, J.P., Boyce, A.J., Pringle, M.S., 2001. Geological evolution of the Escondida area, northern
Chile: a model for spatial and temporal localization of porphyry Cu mineralization. Economic
Geology, 96: 271-305
Richards, J.P., 2016. Clues to hidden copper deposits. Nature Geoscience 9: 195-196.
Ridolfi, F., Renzulli, A., Puerini, M., 2009. Stability and chemical equilibrium of amphibole in calcalkaline
magmas: an overview, new thermobarometric formulations and application to subductionrelated
volcanoes. Contributions to Mineralogy and Petrology 160: 45-66
Ridolfi, F., Renzulli A., 2012. Calcic amphiboles in calc-alkaline and alkaline magmas:
thermobarometric and chemometric emprical equations valid up to 1130 C and 2.2 Gpa. Mineralogy
and Petrology, 163: 877-895
Rutter, M.J., Van der Laan S.R., Wyllie P.J., 1989. Experimental data for a proposed empirical igneous
geobarometer: Aluminium in hornblende at 10 kbar pressure. Geology, 17: 897-900
Schmidt, M.W., 1992. Amphibole composition in tonalite as a function of pressure: An experimental
calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110: 304-10
Schumacher, J.C., 2007. Metamorphic amphiboles: composition and coexistence. In: Hawthorne, F.C.,
Oberti, R., Della Ventura, G., Mottana, A. (Eds.), Amphiboles: crystal chemistry occurrence and
health issues, reviews in mineralogy and geochemistry (67). Mineralogical Society of America,
Washington, D.C, pp. 359-416
Selby, D., Nesbitt, B.E., 2000. Chemical composition of biotite from the Casino porphyry Cu-Au-Mo
mineralization, Yukon, Canada: evaluation of magmatic and hydrothermal fluid chemistry. Chemical
Geology, 171: 77-93
Shahabpour, J., 2007. Island-arc affinity of the Central Iranian Volcanic Belt. Journal of Asian Earth
Sciences 30: 652-665
Siahcheshm, K., Calagari, A.A., Abedini, A., Lentz, D.R. 2012. Halogen signatures of biotites from the
Maher-Abad porphyry copper deposit, Iran: characterization of volatiles in syn-to post-magmatic
hydrothermal fuids. International Geology Reviews, 54: 1353-136
Stöcklin, J., 1974. Northern Iran: Alborz mountains. In: Spencer, A. (Ed.), Mesozoic-Cenozoic orogenic
belts: data for orogenic studies. Geological Society Special Publication, pp. 213-234
Takin, M., 1972. Iranian geology and continental drift in the Middle East. Nature, 235: 147-150
Tang, P., Chen, Y., Tang, J., Wang, Y., Zheng, W., Leng, Q., Lin, B., Wu, E., 2019. Advances in
research of mineral chemistry of magmatic and hydrothermal biotites. Acta Geologica Sinica, 93:
Van Lichtervelde, M., Grégoire, M., Linnen, R.L., Béziat, D., Salvi, S., 2008. Trace element
geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco
pegmatite, Manitoba, Canada. Contribution to Mineralogy and Petrology, 155: 791-806
Verdel, C.S., Wernicke, B.P., Hassanzadeh, J., Guest, B., 2011. A Paleogene extensional arc flare-up in
Iran. Tectonics, 30: 1-20
Vernon, R.H., 1991. Interpretation of Microstructures of Microgranitoid Enclaves. In: Didier, J.,
Barbarin, B. (Eds.), Enclaves and Granite Petrology 13. Elsevier, 277-292
Williamson, B.J., Herrington, R. J., Morris, A., 2016. Porphyry copper enrichment linked to excess
aluminium in plagioclase. Nature Geoscience, 9: 237-241
Geopersia 2023, 13(1): 123-143 143
Williamson, B.J., Hodgkinson, M., Imai, A., Takahashi, R., Armstrong, R.N., Herrington, R.J., 2018.
Testing the Plagioclase Discriminator on the GEOROC Database to Identify Porphyry-Fertile
Magmatic Systems in Japan. Resource Geology, 68(2): 138-143
Wones, D.R., Eugster, H.P., 1965. Stability of biotite: experiment, theory, and application. American
Mineralogist, 50: 1228-1272
Yousefi, M., Omran, N.R., Lotfi, M., Bazoobandi, M.H., 2017. Copper and Gold Mineralization
Features in Deh Bala Region-South of Takestan. Open Journal of Geology, 7: 1022-1046
Zanchi, A., Berra, F., Mattei, M., Ghassemi, M., Sabouri, J., 2006. Inversion tectonics in central Alborz,
Iran. Journal of Structural Geology, 28: 2023-2037
Zarasvandi, A., Rezaei, M., Raith, J.G., Pourkaseb, H., Asadi, S., Saed, M., Lentz, D. R., 2018. Metal
endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper
systems, Urumieh-Dokhtar magmatic arc, Iran. Geochimica et cosmochimica acta, 223: 36-59
Zhu, Y., Ogasawara, Y., 2004. Clinopyroxene phenocrysts (with green salite cores) in trachybasalts:
implications for two magma chambers under the Kokchetav UHP massif, North Kazakhstan, Journal
of Asian Earth Sciences, 22: 517-527