Determination of genesis by Using geochemical and isotopic studies of iron and oxygen in magnetite ore in Gol-e-Gohar iron ore district, Sanandaj-Sirjan zone, Iran

Document Type : Research Paper

Authors

1 School of Geology, College of Sciences, University of Tehran, Tehran, Iran

2 Gohar-Zamin mine, 55 km. Shiraz Road, 78185-111 Sirjan, Kerman, Iran

3 Mineral Resources, Technical University of Clausthal, Adolph-Roemer-Strasse 2a, 38678 Clausthal- Zellerfeld, Germany

Abstract

The Gol-e-Gohar iron deposit in the Sanandaj-Sirjan zone of south-western Iran comprises six majorore bodies. The largest deposit is Gol-e-Gohar No. 3 (Gohar-Zamin) with about 643 Mt @ 53.1% Fe.Magnetite is formed in massive and brecciated shapes. Gol-e-Gohar magnetite contains Mg, Ca, and Siup to the percent range, V and Ti in the 100s ppm level, and low Cr, Co, Ni in the tens of ppm range,typical of Kiruna mineralization (especially Bafq mining district). But Chador-Malu magnetite is formedat a higher temperature than Gol-e-Gohar magnetite, therefore, hydrothermal high-T nature (magmatic ore-forming fluids), which are related to felsic magmatism (host meta-granites), and both of them are attributed to the Early Paleozoic. The oxygen isotope composition of magnetite is 4.9 ± 0.7‰ δ18 O (n = 9) and the iron isotope composition is 0.49 ± 0.05‰ δ56 Fe (n =17). These data suggest that the magnetite ore formed from a magmatic- hydrothermal (high-T) fluid in equilibrium with a granitic source. The Gol-e-Gohar iron ore district shows several similarities to the Bafq mining district, located about 400 km to the north, and seems to be a disrupted member of theKashmar-Kerman arc. Finally, according to the mentioned evidence and comparison of Gol-e-Gohar iron deposit with global samples, the genesis of mineralization in this deposit is most similar to Kiruna- type (Kiruna-type magnetite ± apatite mineralization). 

Keywords

Main Subjects


Article Title [Persian]

-

Badavi, M., Atapour, H., Mohammadi, M., 2019. Mineralogy, petrography, geochemistry of magnetite
ore and sulfide minerals and the possible model of mineralization at Anomaly #3, Gol-e-Gohar, iron
mine, Sirjan (Kerman). Petrology 38: 49-79 (in Persian with English Abstract).
Bayati-Rad, Y., Mirnejad, H., Ghalamghash, J., 2011. Evaluating the origin of magnetite and sulfide
30 Alibabaie et al.
phases from Gol-Gohar iron ore deposit (Sirjan): constraints from O and S isotope data. Geosciences
20: 139-146.
Bayati-Rad, Y., Mirnejad, H., Ghalamghash, J., 2013. Distribution and abundance of rare earth elements
in magnetite from Gol-Gohar iron ore deposit, Sirjan-Kerman. Sci. Q. J. Geosciences 23 (90): 217-
224.
Bilenker, L.D., Simon, A.C., Reich, M., Lundstrom, C.C., Gajos, N., Bindeman, I., Barra, F., Munizaga,
R., 2016. Fe-O Stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite
deposits. Geochimica et Cosmochimica Acta 177: 94-104.
Childress, T.M., Simon, A.S., Day, W.C., Lundstrom, C.C., Bindeman, I.N., 2016. Iron and oxygen
isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, Southeast Missouri,
USA. Economic Geology 111: 2033-2044.
Dare, S.A., Barnes, S.J., Beaudoin, G., Méric, J., Boutroy, E., Potvin-Doucet, C., 2014a. Trace elements
in magnetite as petrogenetic indicators. Mineralium Deposita 49: 785-796.
Dupuis, C., Beaudoin, G., 2011. Discriminant diagrams for iron oxide trace element fingerprinting of
mineral deposit types. Mineralium Deposita 46: 1-17.
Evans, B.W. and Frost, B.R., 1975. Chrome-spinel in progressive metamorphism-preliminary analysis.
Geochimica et Cosmochimica Acta, 39: 959-972.
Heimann, A., Beard, B.L., Johnson, C.M., 2008. The role of volatile exsolution and sub-solidus
fluid/rock interactions in producing high 56Fe/ 54Fe ratios in siliceous igneous rocks. Geochimica et
Cosmochimica Acta, 72: 4379-4396.
Jonsson, E., Troll, V.R., Högdahl, K., Harris, C., Weis, F., Nilsson, K.P., Skelton, A., 2013. Magmatic
origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in Central Sweden. Scientific Reports 3: 16-44.
Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Lundstrom, C.,
Bindeman, I., Munizaga, R., 2015a. Giant Kiruna-type deposits form by efficient floation of
magmatic magnetite suspensions. Geology 43: 655-656.
Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Lundstrom, C.,
Bindeman, I., Munizaga, R., 2015b. Trace elements in magnetite from massive iron oxide-apatite
deposits indicate a combined formation by igneous and magmatic-hydrothermal processes.
Geochimica et Cosmochimica Acta, 171: 15-38.
Loberg, B.E.H., Horndhal, A.K., 1983. Ferride geochemistary of swedish Precambrian iron ores.
Mineralium deposita, 18: 478-504.
Mirzaei, A., Ahmadi, A., Mirnejad, H., Gao d, J.F., Nakashima, K. and Boomeri, M., 2018. Two-tiered
magmatic-hydrothermal and skarn origin of magnetite from Gol-Gohar iron ore deposit of SE Iran:
In-situ LA–ICP-MS analyses. Ore Geology Reviews, 102: 639-653.
Mohajjel, M. Fergusson, C.L., 2000. Dextral transpression in Late Cretaceous continental collision
Sanandaj-Sirjan zone western Iran. Journal of Structural Geology 22: 1125-1139.
Mohajjel, M. Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and
continental collision, Sanandaj–Sirjan Zone, western Iran. Journal of Asian Earth Sciences 21: 397-
412.
Mücke, A. and Golestaneh, F., 1982. The genesis of the Gol Gohar iron ore deposit (Iran). Chemie der
Erde - Geochemistry, 41(3): 193-212.
Nadoll, P. Angerer. T. Mauk, J. L. French, D., Walshe, J., 2014a.The chemistry of hydrothermal
magnetite. A review. Ore Geology Reviews, 61: 1-32.
Ramezani J., and Tucker, R.D., 2003. The Saghand region, Central Iran: U-Pb geochronology,
petrogenesis and implications for Gondwana tectonics: American Journal of Science, 303: 622-665.
Safarzade, E., Masoudi, F., Hassanzade, J. and Pourmoafi, S.M., 2016. The presence of Precambrian
basement in Gol-e-Gohar of Sirjan (south of Iran). Petrology 26: 153-170.
Sheikholeslami, M.R., Pique, A., Mobayen, P., Sabzehei, M., Bellon, H., Emami, H., 2008. Tectonometamorphic
evolution of the Neyriz metamorphic complex, Quri-Kor-eSefid area (Sanandaj-Sirjan
Zone, SW Iran). J. Journal of Asian Earth Sciences, 31: 504–521.
Singoyi, B., Danyushevsky, L., Davidson, G.J., Large, R., Zaw, K., 2006. Determination of trace
elements in magnetites from hydrothermal deposits using the LA-ICP-MS technique. Abstracts of
Oral and Poster Presentations from the SEG, Conference Society of Economic Geologists, Keystone,
USA, 367-368.
Taylor, H.P. Jr., 1967. Oxygen isotope studies of hydrothermal mineral deposits, in Barnes, H.L., ed.,
Geopersia 2023, 13(1): 15-31 31
Geochemistry of Hydrothermal Ore Deposits. New York, Holt, Rinehart and Winston, 109-142.
Taylor, H.P. Jr., 1968. The oxygen isotope geochemistry of igneous rocks. Contributions Mineralogy
and Petrology 19: 1-71.
Torab, F. M., 2008. Geochemistry and metallogeny of magnetite-apatite deposits of the Bafq Mining
District, Central Iran. Doctoral Thesis, Clausthal University of Technology, 131 p.
Torab, F.M., Lehmann, B., 2007. Magnetite-apatite deposits of the Bafq mining district, Central Iran:
apatite geochemistry and monazite geochronology. Mineralogical Magazine 71: 347-363.
Weis, F., 2013. Oxygen and iron isotope systematics of the Grängesberg mining district (GMD), Central
Sweden. M.S. thesis, Uppsala University, 77 p.
Young, G.M., 1976. Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest Territories,
Canada. Precambrian Research, 3: 137-158.