Thermochemical investigation of the oil shale from the Early Cretaceous Garau Formation, Lorestan, SW Iran: Preliminary TGA-FTIR results

Document Type : Research Paper


1 Institute of Petroleum Engineering (IPE), School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 Exploration Directorate, National Iranian Oil Company (NIOC), Tehran, Iran


The oil shale is a prodigious immature kerogen-rich resource, which represent an outstanding potential of oil generation through thermochemical processing at ~350-530°C depending on kerogen peculiarities. Kinetic investigation is one of the fundamental approaches for quantifying and evaluation of this process. The main aim of this study is thermal and kinetic investigation on the Garau oil shale (Early Cretaceous) from Lorestan province of Iran using TGA-DTG analysis (Thermogravimetry Analysis; TGA and Differential Thermogravimetry Analysis; DTG) under three constant 5, 10, 15 °C/min heating rate from 20°C up to 900 °C. The FTIR (Fourier transform infrared spectroscopy) analysis was used to evaluate the evolved gases during thermochemical decomposition of the Garau oil shale. The results show the combustion process of the representative sample from the Garau oil shale involves two main peaks of mass loss, which reveal two main reaction regions. The first reaction region is originated from organic matter (bitumen & kerogen) decomposition and the second reaction region is occurred as the result of calcite thermal breaking down. According to the average activation energy calculated for the organic matter decomposition (~183 kJ/mol), the Garau oil shale corresponds to medium-fast reaction rate kerogens, in consistent with IIS-kerogen reaction rate (144-218 KJ/mol).


Main Subjects

Article Title [Persian]


Behar, F., Lorant, F., Lewan, M., 2008. Role of NSO compounds during primary cracking of a Type II
kerogen and a Type III lignite, Organic Geochemistry, 39: 1-22.##
Braun, R. L., Rothman, A. J., 1975. Oil-shale pyrolysis: Kinetics and mechanism of oil production, Fuel,
54: 129-131.##
Brown, M. E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A. K., Opfermann,
J., Strey, R., Anderson, H. L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H. O., Li, C.-R.,
Tang, T. B., Roduit, B., Malek, J., Mitsuhashi, T., 2000. Computational aspects of kinetic analysis,
Thermochimica Acta, 355: 125-143.##
Burnham, A. K., Happe, J. A., 1994. On the mechanism of kerogen pyrolysis, Fuel, 63: 1353-1356.##
Burnham, A. K., Huss, B. E., Singleton, M.F., 1983. Pyrolysis kinetics for Green River oil shale from
the saline zone, M. F. Fuel, 62: 1199-1204.##
Campbell, J. H., Gallegos, G., Gregg, M.,1980. Gas evolution during oil shale pyrolysis. 2. Kinetic and
stoichiometric analysis, Fuel, 59: 727-732.##
Campbell, J. H., Koskinas, G. J., Gallegos, G., Gregg, M., 1980. Gas evolution during oil shale pyrolysis.
1. Nonisothermal rate measurements, Fuel, 59: 718-726.##
Finucane, D., George, J., Harrist, H., 1977. Perturbation analysis of second-order effects in kinetics of
oil-shale pyrolysis, H. G. Fuel, 56: 65-69.##
Flynn, J. H., Wall, L. A.,1966. General treatment of the thermogravimetry of polymers, J Res Nat Bur
Stand, 70(6): 487-523.##
Fogler, H. S., 2006. Elements of Chemical Reaction Engineering; 4th Edition, Prentice Hall, Upper
Saddle River, 869-87.##
Hunt, M. H., 1996. Petroleum Geochemistry and Geology; W. H. Freeman and Company, 1-743.##
Johannes, I., Zaidentsal, A., 2008. Kinetics of low-temperature retorting of Kukersite oil shale, Oil
Shale, 25(4): 412-425.##
Kissinger, H. E.,1957. Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29(11):
Kök, M. V., Pamir, M. R., 1995. Pyrolysis and combustion studies of fossil fuels by thermal analysis
methods, Journal of Analytical and Applied Pyrolysis, 35: 145-156.##
Kök, M. V., Senguler, I., Hufnagel, H., Sonel, N., 2001. Thermal and Geochemical Investigation of
Seyitömer Oil Shale, Thermochimica Acta, 371: 111-119.##
Ozawa, T., 1965. A new method of analyzing thermogravimetric data, Bulletin of the chemical society
of Japan, 38(11): 1881-1886.##
Qing, W., Hongpeng, L., Baizhong, S., Shaohua, L., 2009. Study on pyrolysis characteristics of huadian
oil shale with isoconversional method, Oil Shale, 26(2): 148-162.##
Rasouli, A., Shekarifard, A., Jalali Farahani, F., Kök, M. V., 2014. In 6th Saint Petersburg International
Conference & Exhibition - Geosciences - Investing in the Future; EarthDoc: Saint Petersburg, Russia,
Rasouli, A., Shekarifard, A., Jalali Farahani, F., Kök, M. V., Daryabandeh, M. Rashidi, M., 2015.
Occurrence of organic-rich deposits (Middle Jurassic to Lower Cretaceous) from Qalikuh locality,
Zagros Basin, South-West of Iran: A possible oil shale resource. International Journal of Coal
Geology, 143: 34-42.##
Rajeshwar, K., 1981. The kinetics of the thermal decomposition of green river oil shale kerogen by nonisothermal
thermogravimetry, Thermochimica Acta, 45: 253-263.##
Rajeshwar, K., DuBow, J. B., 1982. On the validity of a first-order kinetics scheme for the thermal
decomposition of oil shale kerogen, Thermochimica Acta, 54: 71-85.##
Rosenvold, R. J., Rajeshwar, K.,1982. On the correlation between thermogravimetric response and
potential oil yields for green river oil shale, Thermochimica Acta, 57: 1-3.##
Sbirrazzuoli, N., 2007. Is the Friedman method applicable to transformations with temperature
dependent reaction heat? , Macromolecular Chemistry and Physics, 208: 1592-1597.##
Sbirrazzuoli, N., Vincent, L., Mija, A., Guigo, N., 2009. Integral, differential and advanced
isoconversional methods, Chemometrics and Intelligent Laboratory Systems, 96: 219-226.##
Shekarifard, A., Daryabandeh, M., Rashidi, M., Hajian, M. Röth, J., 2019. Petroleum geochemical
properties of the oil shale from the Lower Cretaceous Garau Formation, Qalikuh locality, Zagros
Geopersia 2021, 11(2): 289-297 297##
Range, Iran. International Journal of Coal Geology, 206: 1-18.##
Skala, D., Kopsch, H., Sokić, M., Neumann, H.-J., Jovanović, j., 1987. Thermogravi-metrically and
differential scanning calorimetrically derived kinetics of oil shale pyrolysis , Fuel, 66: 1185-1191.##
Tiwari, P., Deo, M., 2012. Detailed kinetic analysis of oil shale pyrolysis TGA data, AIChE, 58(2): 505-
Vyazovkin, S., Wight, C. A., 1998. Isothermal and non-isothermal kinetics of thermally stimulated
reactions of solids, International Reviews in Physical Chemistry, 17(3): 407-433.##
Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., Sbirrazzuoli, N.,
2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal
analysis data, Thermochimica Acta, 520: 1-19.##
Warne, S. S. J., Dubrawski, J. V., 1989. Applications of DTA and DSC to coal and oil shale evaluation,
Journal of Thermal Analysis, 35: 219-242.##
Williams, P. F. V., 1985. Petroleum geochemistry of the Kimmeridge Clay of onshore Southern and
Eastern England, Fuel, 64: 540-545.##
Williams, P. T., Ahmad, N., 2000. Investigation of oil-shale pyrolysis processing conditions using
thermogravimetric analysis, Applied Energy, 66: 113-133##