Influence of mechanical parameters and overburden pressure on the mechanical evolution of fault propagation folds: insights from 2D finite-element elastic-plastic models applied to the Ayegan anticline, central Alborz

Document Type : Research Paper

Authors

1 Department of Geology, Faculty of Earth Sciences , Shahid Beheshti University, Tehran, Iran

2 Department of Geology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran

3 Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran

4 Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Fault-related folding, due to the variety of tectonic setting, seismic and economic importance, has always been of interest to geologists. In this study, we investigate the influence of different aspects of the mechanical parameters (Young's modulus, Poisson's ratio, dilation angle, and cohesion) and boundary conditions (overburden pressure) to determine the fault-propagation folding style and its mechanical evolution through the use of a series of 2D finite-element elastic-plastic models so that the use of inelastic relationships allows permanent strains to develop in response to the applied loads. All FE-models with the mechanical parameters reduced to 15%, except for Young’s modulus and overburden pressure, lead to lower half- wavelength and amplitude values concerning the reference model, and as these parameters are changed by 15% and 30% simultaneously to validate the results, the area reduction is dramatically increased. FE-model results show that area changes in fault propagation fold are as a function of mechanical stratigraphy, mechanical parameters, and overburden pressure. Area loss can also lead to a decrease in permeability through intergranular mechanisms. We apply these insights to the Ayegan anticline, central Alborz that generally show well-designed FE-modelling matched overall structural geometry in the kink-style kinematic model.

Keywords


Article Title [فارسی]

-

Alavi, M., 1996. Tectonostratigraphic synthesis and structural style of the Alborz mountain
system in northern Iran. Journal of Geodynamics, 21: 1 -33.##
Albertz, M., Lingrey, S., 2012. Critical state finite element models of contractional fault-related
folding: part 1. Mechanical analysis. Tectonophysics, 576-577: 133-149.##
Albertz, M., Sanz, P.F., 2012. Critical state finite element models of contractional fault-related
folding: part 2. Mechanical analysis. Tectonophysics, 576-577: 150-170.##
Alipoor, R., Alavi., S. A., Abdollahie Fardc, I., Ghassemi, M. R., 2019. Structural analysis of
the Aghajari and Pazanan anticlines, Dezful Embayment, SW Iran. Journal of Petroleum
Science and Engineering, 176: 27-42.##
Allen, M.B., Ghassemi, M.R., Shahrabi, M. and Qorashi, M., 2003. Accommodation of Late
112 Khalife- Soltani et al. Cenozoic oblique shortening in the Alborz Range, Northern Iran. Journal of Structural Geology, 25: 659- 672.##
Ballato, P., Stockli, D.F., Ghassemi, M. R., Landgraf, A., Strecker, M.R., Hassanzadeh, J.,
Friedrich, A., and Tabatabaei, S.H., 2013. Accomodation of transpressional strain in the
Arabia- Eurasia collision zone: new contraints from (UTh)/ He thermochronology in the
Alborz Mountaions, N Iran. Tectonics, 32: 1- 18.##
Ballato, P., Uba, C.E., Landgraf, A., Strecker, M.R., Sudo, M., Stockli, D.F., Friedrich, A. and
Tabatabaei, S.H., 2011. Arabia-Eurasia continental collision: Insights from late Tertiary
foreland basin evolution in the Alborz mountains, northern Iran. Geological Society of
America Bulletin, 123: 106-131.##
Bernard, S., Avouac, J.-P., Dominguez, S., Simoes, M., 2007. Kinematics of fault-related
folding derived from sandbox experiments. J. Geophys. Res, 112: B03S12.##
Bonanno, E., Bonini, L., Basili, R., Toscani, G., Seno, S., 2017. How do horizontal, frictional
discontinuities affect reverse fault-propagation folding? Journal of Structural Geology,
dio:10.1016/j.jsg.2017.08.001.##
Brandes, C., Tanner, D.C., 2014. Fault-related folding: A review of kinematic models and their
application. Earth-Science Reviews, 138: 352-370.##
Bulnes, M., Poblet, J., Uzkeda, H., Rodríguez-álvarez, I., 2018. Mechanical stratigraphy
influence on fault-related folds development: Insights from the Cantabrian Zone (NW
Iberian Peninsula). Journal of Structural Geology, doi: 10.1016/j.jsg.2018.10.002.##
Cardozo, N., Jackson, C.A.-L., Whipp, P.S., 2011. Determining the uniqueness of best-fit
trishear models. J. Struct. Geol. 33, 1063-1078. Cardozo, N., 2005. Trishear modelling of
fold bedding data along a topographic profile. J. Struct. Geol, 27: 495-502.##
Chester, J., 2003. Mechanical stratigraphy and fault-fold interaction, Absaroka thrust sheet, Salt
River Range, Wyoming. Journal of Structural Geology, 25: 1171-1192.##
Cruz, L., Vásquez Serrano, A., Fitz-Díaz, E., Hudleston, P., 2019. Quantifying frictional
variations and erosion in the Mexican fold-thrust belt. Journal of Structural Geology, 120:
1-13.##
Derikvand, B., Alavi, S. A., Abdollahie Fard, I., Hajialibeigi, H., 2018. Folding style of the
Dezful Embayment of Zagros Belt: Signatures of detachment horizons, deep-rooted faulting
and syn-deformation deposition. Marine and Petroleum Geology, 91: 501-518.##
Derikvand, B., Alavi, S. A., Abdollahie Fard, I., Jalali, L., 2019. Changing in fold geometry
from faulted detachment fold to fault-bend fold, a case study: The Zeloi Anticline in the
Dezful Embayment, southwest of Iran. Journal of Petroleum Science and Engineering, 173:
381-401##
DeVecchio, D.E., Keller, E.A., Fuchs, M., Owen, L.A., 2012. Late Pleistocene structural
evolution of the Camarillo fold belt: implications for lateral fault growth and seismic hazard
in southern California. Lithosphere, 4: 91-109.##
Ehteshami-Moinabadi, M. Yassaghi, A. 2013. Oblique inversion, a model for Oligocene-
Miocene tectonics of south Central Alborz. Researches in Earth Sciences, 4: 32-50.##
Ehteshami-Moinabadi, M. Yassaghi, A., 2007. Geometry and kinematics of the Mosha Fault,
south central Alborz Range, Iran: An example of basement involved thrusting. Journal of
Asian Earth Sciences, 29: 928-938.##
Ehteshami-Moinabadi, M., Yassaghi, A. and Amini, A., 2012. Mesozoic basin inversion in
Central Alborz, evidence from the Taleqan- Gajereh-Lar Paleograben. Journal of Geopersia,
2: 43-63.##
Feng, J., Gu1, K., 2017. Geomechanical Modeling of Stress and Fracture Distribution during
Contractional Fault-Related Folding. Journal of Geoscience and Environment Protection, 5:
61-93.##
Ferrill, D.A., Morris, A.P., McGinnis, R.N., 2012. Extensional fault-propagation folding in
Geopersia 2021, 11(1): 101-114 113 mechanically layered rocks: the case against the frictional drag mechanism. Tectonophysics, 576-577: 78-85.##
Ghassemi, M. R., Fattahi, M., Landgraf, A., Ahmadi, M., Ballato, P., Tabatabaei, S. H., 2014.
Kinematic links between the Eastern Mosha Fault and the North Tehran Fault, Alborz range,
northern Iran. Tectonophysics, 622: 81- 95.##
Guest, B., Axen, G.J., Lam, P.S. and Hassanzadeh, J., 2006b. Late Cenozoic shortening in the
westcentral Alborz Mountain, northern Iran, by combined conjugate strike slip and thinskinned
deformation. Geosphere, 2: 35-52.##
Guzofski, C.A., Shaw, J.H., Lin, G., Shearer, P.M., 2007. Seismically active wedge structure
beneath the Coalinga anticline, San Joaquin basin, California. J. Geophys. Res, 112: B03S05.##
Hardy, S., Finch, E., 2007. Mechanical stratigraphy and the transition from trishear to kinkband
fault-propagation folds forms above blind basement thrust faults. A discrete-element
study. Mar. Pet. Geol, 24: 75-90.##
Hughes, A.N. and Shaw, J.H., 2015. Insights into the mechanics of fault-propagation folding
styles. GSA Bulletin, 127(11-12):1752-1765.##
Hughes, A.N., Benesh, N.P. and Shaw, J.H., 2014. Factors that control the development of
fault-bend versus fault-propagation folds: Insights from mechanical models based on the
discrete element method (DEM). Journal of Structural Geology, 68: 121-14.##
Jabbour, M., Dhont, D., Hervouët, Y., Deroin, J. P., 2012. Geometry and kinematics of faultpropagation folds with variable interlimb angle. Journal of Structural Geology, 42: 212- 226.##
Johnson, K.M., Segall, P., 2004. Imaging the ramp-décollement geometry of the Chelungpu
fault using coseismic GPS displacements from the 1999 Chi-Chi, Taiwan earthquake.
Tectonophysics, 378: 123-139.##
Landgraf, A., Ballato, P., Strecker, M. R., Friedrich, A., Tabatabaei, S. H., and
Shahpasandzadeh, M., 2009. Fault-kinematic and geomorphic observations along the North
Tehran Thrust and Mosha-Fasham Fault, Alborz Mountains, Iran: Implications for faultsystem
evolution and interaction in a changing tectonic regime, Geophys. J. Int., 177: 676-
690, doi:10.1111/j.1365-246X.2009.04089.x.##
Lin, M.L.,Wang, C.P., Chen,W.S., Yang, C.N., Jeng, F.S., 2007. Inference of trishear-faulting
processes fromdeformed pregrowth and growth strata. J. Struct. Geol, 29: 1267-1280.##
Maerten F., Maerten L., Pollard D.D., 2014. iBem3D, a three-dimensional iterative boundary
element method using angular dislocations for modeling geologic structures. Computers &
Geosciences, 72: 1-17.##
McClay, K.R., 1995. The geometries and kinematics of inverted fault systems: a review of
analogue model studies. In: Buchanan, J.G., Buchanan, P.G. (Eds.), Basin InversionGeol.
Soc. Spec. Publ, 88: 97-118 (London).##
Medina-Cascales, I., Koch, L., Cardozo, N., Martin-RojasI., Alfaro, P., García-Tortosa, F. J.,
2019. 3D geometry and architecture of a normal fault zone in poorly lithified sediments: A
trench study on a strand of the Baza Fault, central Betic Cordillera, south Spain. Journal of
Structural Geology https://doi.org/10.1016/j.jsg.2019.02.003.##
Mitra, S., 1990. Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps.
AAPG Bull, 74: 921-945.##
Mitra, S., 2002a. Fold-accommodation faults. AAPG Bull, 86: 671-693.##
Nabavi, S. T., Alavi, S. A., Díaz-Azpiroz, M., Mohammadi, S., Ghassemi, M.R., Fernandez,
C., Barcos, L., Frehner, M., 2020. Deformation mechanics in inclined, brittle-ductile
transpression zones: Insights from 3D finite element modelling. Journal of Structural
Geology, 137: 104082.##
Nabavi, S. T., Alavi, S. A., Maerten., F., 2018b. 2D finite-element elastic models of
transtensional pull-apart basins. Comptes Rendus Geoscience, 350: 222-230.##
Nabavi, S. T., Alavi, S. A., Mohammadi, S., Ghassemi, M.R., 2018a. Mechanical evolution of
114 Khalife- Soltani et al. transpression zones affected by fault interactions: Insights from 3D elasto-plastic finite element models. Journal of Structural Geology, 106: 19-40.##
Nabavi, S. T., Alavi, S. A., Mohammadi, S., Ghassemi, M.R., Frehner, M., 2017b. Analysis of
transpression within contractional fault steps using finite-element method. Journal of
Structural Geology, 96: 1-20.##
Nabavi, S.T., Díaz-Azpiroz, M., Talbot, C.J., 2017a. Inclined transpression in the Neka Valley,
eastern Alborz, Iran. International Journal of Earth Sciences, 106: 1815-1840.##
Ramsay J, Huber M, 1987. The techniques of modern structural geology, Fold and fractures.
Academic Press, London, 2: 1- 462.##
Smart, K.J., Ferrill, D.A., Morris, A.P., McGinnis, R.N., 2012b. Geomechanical modelling of
stress and strain evolution during contractional fault-related folding. Tectonophysics, 576-
577: 171-196.##
Stocklin, J., 1968. Structural History and Tectonic of Iran: A Review. American Association of
Petroleum Geologists Bulletin, USA, 52: 1229-1258.##
Suppe, J., 1983. Geometry and kinematics of fault-bend folding. Am. J. Sci, 283: 684-721.##
Suppe, J., Medwedeff, D.A., 1990. Geometry and kinematics of fault-propagation folding.
Eclogae Geol. Helv, 83: 409-454.##
Thebian, L., Najjar, S., Sadek, S., Mabsout, M., 2017. Numerical investigation of dip-slip fault
propagation effects on offshore seabed sediments. Engineering Geology, 237: 149- 167.##
Vahdati- Daneshmand, F., 2001. Geological map of Marzan- Abad, Iran. Geological survey of
Iran, Scale 1: 100,000.##
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C., Masson, F., Nankali, H.,
Martinod, J., Ashtiani, M., Bayer, R., Tavakoli, F., and Chéry, J., 2004. Present-day crustal
deformation and plate kinematics in the Middle East constrained by GPS measurements in
Iran and northern Oman. Geophys. J. Int, 157: 381- 398.##
Williams, G., Chapman, T., 1983. Strains developed in the hangingwalls of thrusts due to their
slip/propagation rate: a dislocation model. J. Struct. Geol, 5: 563-571.##
Yassaghi, A. and Madanipour, S., 2008. Influence of a transverse basement fault on along-strike variations in the geometry of an inverted normal fault: Case study of the Mosha Fault,
Central Alborz Range, Iran. Journal of Structural Geology, 30: 1507-1519.##
Yassaghi, A., Naeimi, A., 2011. Structural analysis of the Gachsar sub-zone in central Alborz
range; constrain for inversion tectonics followed by the range transverse faulting.
International journal of earth sciences, 100: 1237-1249.##
Zanchi, A., Zanchetta, S., Berra, F., Mattei, M., Garzanti, E., Molyneux, S., Nawab, A., Sabouri,
J., 2009. The EoCimmerian (Late? Triassic) orogeny in north Iran. In: Brunet, M.F.,
Wilmsen, M., Granath, J.W. (Eds.), South Caspian to Central Iran Basins. Geological
Society, London, Special Publications, 312: 31-55.##