Facies analysis, petrography and geochemistry of the Neogene gypsum deposits in the Eshtehard area, Alborz Province, Iran

Document Type : Research Paper

Authors

Department of Geology, College of Sciences, Bu-Ali Sina University, Hamedan, Iran

Abstract

The evaporite deposits examined in this study are located in the Eshtehard area (SW of the Alborz Province). Four outcrop sections (Mard Abad, Eshtehard, Salt Mine and Rud Shur) and thirty gypsum samples were selected for facies analysis, petrographical and mineralogical investigation in combination with the geochemical analyses. The Neogene evaporites are composed of massive, selenite, nodular and satin-spar gypsum lithofacies. Three different textures were recognized under microscope: porphyroblastic, alabastrine, and fibrous gypsum. Petrographical investigations and X-ray diffraction analysis showed the evaporite beds are mainly composed of gypsum, with no anhydrite relics. The characteristics of these litho- and microfacies indicate gypsum deposited in the lacustrine and sabkha settings. The ICP-OES analysis shows significant differences in major and trace element contents of the four types of gypsums. The concentrations of Sr, Fe, Al, Mg and Na were increased in massive gypsum, while the crystals represent a decreased in size. The contents of these elements were also decreased in nodular, fibrous and selenite gypsums. These are probably indicating an increase and decrease in brine concentration, respectively. Paleoclimate condition is simply determined for the Neogene evaporites using geochemical approach. The results suggest a shift from semi-arid (bottom) to arid (top) paleoclimate conditions.

Keywords


Article Title [فارسی]

-

Abrantes, F.R., Nogueira, A.C.R., Soares, J.L., 2016. Permian paleogeography of west–central Pangea: Reconstruction using sabkha–type gypsum–bearing deposits of Parnaíba Basin, Northern Brazil, Sedimentary Geology, 341: 175–188.##
Aljubouri, Z. A., 2011. Geochemistry of calcium sulphate rocks of Fat`ha Formation at four localities within Nineveh District, Northern Iraq (with emphasis on strontium distribution), Iraqi National Journal of Earth Sciences, 11: 49–70.##
Arenas, C., Pardo, G., 1999. Latest oligocene–late miocene lacustrine systems of the north–central part of the Ebro Basin (Spain): Sedimentary facies model and palaeogeographic synthesis, Palaeogeography, Palaeoclimatology, Palaeoecology: 151: 127–148.##
Attia, O.E., Lowenstein, T.K., Wali, A.M.A., 1995. Middle Miocene gypsum, Gulf of Suez: marine or nonmarine? Journal of Sedimentary Research: 65: 614–626.##
Averty, K.B., Paytan, A., 2003. Empirical partition coefficients for Sr and Ca in marine barite: implications for reconstructing seawater Sr and Ca concentrations. Geochemistry, Geophysics, Geosystems, 4: 1525–2027.##
Babel, M., 1999a. Facies and depositional environments of the Nida Gypsum deposits (Middle Miocene, Carpathian Foredeep, southern Poland). Geological Quarterly, 43: 405–428.##
Babel, M., 2004a. Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geologica Polonica, 54: 219–249.##
Bahadori, A., Carranza, E.J.M., Soleimani, B., 2011. Geochemical analysis of evaporite sedimentation in the Gachsaran Formation, Zeloi oil field, southwest Iran. Journal of Geochemical Exploration, 111: 97–112.##
Facies analysis, petrography and geochemistry of the Neogene gypsum deposits … 301
Bertini, A., 2006. The Northern Apennines palynological record as a contribute for the reconstruction of the Messinian palaeoenvironments. Sedimentary Geology, 188: 235–258.##
Bosbach, D., Hochella, M.F., 1996. Gypsum growth in the presence of growth inhibitors: a scanning force microscopy study. Chemical Geology. 132: 227–236.##
Butler, G.P., 1973. Strontium geochemistry of modern and ancient calcium sulphate minerals. In The Persian Gulf, Springer, 423–452.##
Clemmensen, L.B., 1979. Triassic lacustrine red–beds and paleoclimate: The "Buntsandstein" of Helgoland and the Malmros Klint Member of East Greenland. Geologische Rundschau. 68: 748–774.##
Cody, R.D., 1979. Lenticular gypsum: occurrences in nature, and experimental determinations of effects of soluble green plant material on its formation. Journal of Sedimentary Research, 49: 1015–1028.##
Cody, R.D., Cody, A.M., 1988. Gypsum nucleation and crystal morphology in analog saline terrestrial environments. Journal of Sedimentary Research, 58: 247–255.##
Cooke, R. U., and Warren, A., 1973. Geomorphology in Deserts. Univ. of Calif. Press, Los Angcles, 374 pp.##
Dill, H.G., Bechtel, A., Berner, Z., Botz, R., Kus, J., Heunisch, C., Hamad, A.M.B.A., 2012. The evaporate–coal transition: chemical, mineralogical and organic composition of the Late Triassic Abu Ruweis Formation, NW Jordandreference type of the “Arabian Keuper”. Chemical Geology, 299: 20–40.##
Dronkert, H., 1985. Evaporite models and sedimentology of Messinian and Recent evaporites. GUA Papers of Geology, 24: 1–283.##
Eugster, H.P., Hardie, L.A., 1975. Sedimentation in an ancient playa–lake complex: the Wilkins Peak Member of the Green River Formation of Wyoming. Geological Society of America Bulletin, 86: 319–334.##
Edinger, S.E., 1973. An investigation of the factors which affect the size and growth rates of the habit faces of gypsum. Journal of Crystal Growth, 18: 217–224.##
El–Tabakh, M., Schreiber, B.C., Warren, J.K., 1998. Late fibrous fracture–fill within non–marine strata of the Newark Rift Basin, Eastern North America. Journal of Sedimentary Research, 68: 88–99.##
Franchini–Angela, M., Rinaudo, C., 1989. Influence of sodium and magnesium on the growth–morphology of gypsum, CaSO4.2H2O. Neues Jahrbuch Fur Mineralogie–Abhandlungen, 160: 105–115.##
Gallet, S., Jahn, B.M., Torii, M., 1996. Geochemical characterization of the Luochuan loess–paleosol sequence, China, and paleoclimatic implications: Chemical Geology, 133: 67–88.##
Glennie, K.W., 1970. Desert sedimentary Envirmments. Elsevier Publ. Co., New York, 222 pp.##
Glennie, K.W., 1987. Desert sedimentary environments, present and past – a summary. Sedimentary Geology, 50: 135–165.##
Guan, B., Yang, L., Wu, Z., 2010. Effect of Mg2+ ions on the nucleation kinetics of calcium sulfate in concentrated calcium chloride solutions. Industrial & Engineering Chemistry Research, 49: 5569–5574.##
Hamdona, S.K., Hadad, O.A.A., 2008. Influence of additives on the precipitation of gypsum in sodium chloride solutions. Desalination, 228: 277–286.##
Hardie, LA., 1984. Evaporites: Marine or non–marine? American Journal of Science, 284: 193–240.##
Hardie, L.A., Smoot, J.P., Evgster, H.P., 1978. Saline lakes and their deposits: A sedimentological approach. Modern and Ancient Lake Sediments, International Association of Sedimentologists, 7–41.##
Holliday, D.W., 1970. The petrology of secondary gypsum rocks. Journal of Sedimentary Research, 40: 734–744.##
Ichikuni, M., Musha, S., 1978. Partition of strontium between gypsum and solution. Chemical Geology, 21: 359 363.##
Ingerson, E., 1968. Deposition and geochemistry work sessions. In: Mattox RB, et al. (ed.) Saline Deposits, New York: The Geological Society of America. Special Paper, 88: 671–681.##
Kendall, A.C., 1981. Continental and supratidal (Sabkha) evaporates. In: Walker, R.G. (Ed.), Facies Models. Geoscience Canada, 1: 145–157.##
Kushnir, J., 1980. The coprecipitation of strontium, magnesium, sodium, potassium, and chloride ions with gypsum, an experimental study. Geochimica et Cosmochimica Acta, 44: 1471–1482.##
Kushnir, J., 1981. Formation and early diagenesis of varved evaporite sediments in a coastal hypersaline pool. Journal of Sedimentary Research 51, 1193–1203.##
Last, W.M., Schweyen, T.H., 1985. Late Holocene history of Waldsea Lake, Saskatchewan, Canada. Quaternary Research, 24: 219–234.##
Li, M., Fang, X., Wang, J., Song, Y., Yang, Y., Zhang, W., Liu, X., 2013. Evaporite minerals of the lower 538.5 m sediments in a long core from the Western Qaidam Basin, Tibet. Quaternary International, 298: 123–133.##
Li, M., Fang, X., Yi, C., Gao, S., Zhang, W., Galy, A., 2010. Evaporite minerals and geochemistry of the upper 400m sediments in a core from the Western Qaidam Basin, Tibet. Quaternary International, 218: 176–189.##
Liu, S.T., Nancollas, G.H., 1973. The crystal growth of calcium sulfate dihydrate in the presence of additives. Journal of Colloid and Interface Science, 44: 422 429.##
Lu, F.H., 2000. Sedimentology and geochemistry of late Miocene carbonates and evaporites, Nijar Basin, southeastern 302 Zaheri & Rafiei Geopersia, 10 (2), 2020##
Spain. Unpublished Ph. D dissertation, SUNY, Stony Brook., 198 pp.##
Lu, F.H., Meyers, W.J., Hanson, G.N., 2002. Trace elements and environmental significance of Messinian gypsum deposits, the Nijar Basin, southeastern Spain. Chemical Geology, 192: 149–161.##
Lu, F.H., Meyers, W.J., Schoonen, M.A.A., 1997. Minor and trace element analyses on gypsum: an experimental study,Chemical Geology, 142: 1–10.##
Mahdizadeh, S., 1995. Geologic Map of Karaj, Geological Survey of Iran, Tehran, scale 1:100000.##
Magee, J.W., 1991. Late Quaternary lacustrine, groundwater, aeolian and pedogenic gypsum in the Prungle Lakes, southeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 84: 3–42.##
Mason, B., Moore, C.B., 1982. Principles of Geochemistry: New York, Wiley, 344 pp.##
McIntire, W.L., 1963. Trace element partition coefficients e a review of theory and applications to geology. Geochimica–Cosmochimica Acta, 27: 1209–1264.##
McCaffrey, M.A., Lazar, B., Holland, H.D., 1987. The evaporation path of seawater and the co–precipitation of Br– and K+ with halite. Journal of Sedimentary Research, 57: 928–937.##
Mees, F., Casteneda, C., Herrero, J., Ranst, E.V., 2012. The nature and significance of variations in gypsum crystal morphology in dry lake basins. Journal of Sedimentary Research, 82: 37–52.##
Mossop, G.D., Shearman, D.J., 1973. Origins of secondary gypsum rocks. Trans. Inst.Min. Metall, 82: 147–154.##
Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715–717.##
Nichols, G., 2009, Sedimentology and Stratigraphy, 2nd ed. Wiley–Blackwell, 419 pp.##
Ortí, F., Rosell, L., 2000. Evaporative systems and diagenetic patterns in the Calatayud Basin (Miocene, central Spain). Sedimentology, 47: 665–685.##
Ortí, F., Rosell, L., Anadón, P., 2010. Diagenetic gypsum related to sulfur deposits in evaporates (Libros Gypsum, Miocene, NE Spain). Sedimentary Geology, 228: 304–318.##
Otalora, F., Garcia–Ruiz, J., 2014. Nucleation and growth of the Naica giant gypsum crystals. Chemical Society Reviews, 43: 2013– 2026.##
Peryt, T.M., 2001.Gypsumfacies transitions in basin–marginal evaporites: middle miocene (Badenian) of west Ukranie. Sedimentology, 48, 1103–1119.##
Playa, E., Cendon, D.I., Trave, A., Chivas, A.R., García, A., 2007. Non–marine evaporates with both inherited marine and continental signatures: the Gulf of Carpentaria, Australia, at ~70 ka. Sedimentary Geology, 201: 267–285.##
Raeisi, E., Zare, M., Aghdam, J.A., 2013. Hydrogeology of gypsum formations in Iran. Journal of Cave and Karst Studies, 75: 68–80.##
Rögner, K., Knabe, K., Roscher, B., Smykatz–Kloss, W., Zöller, L., 2004. Alluvial loess in the Central Sinai: Occurrence, origin, and palaeoclimatological consideration, in Smykatz–Kloss, W., Felix–Henningsen, P. (eds.),##
Palaeoecology of Quaternary Drylands, Lecture Notes on Earth Sciences: Berlin, Springer, 79–99.##
Rosell, L., Ortí, F., Kasprzyk, A., Playà, E., Peryt, T.M., 1998. Strontium geochemistry of Miocene primary gypsum: Messinian of Southeastern Spain and Sicily and Badenian of Poland. Journal of Sedimentary Research, 68: 63–79.##
Rossi, M., Ghiara, M.R., Chita, G., Capitelli, F., 2011. Crystal–chemical and structural characterization of fluorapatites in ejecta from Somma–Vesuvius volcanic complex. American Mineralogist, 96: 1828–1837.##
Roy, P.D., Caballero, M., Lozano, R., Smykatz–Kloss, W., 2008a. Geochemistry of late quaternary sediments from Tecocomulco Lake, central Mexico: Implication to chemical weathering and provenance: Chemie der Erde – Geochemistry, 68: 383–393.##
Roy, P.D., Smykatz–Kloss, W., Morton, O., 2008b. Geochemical zones and reconstruction of late Holocene environments from shallow core sediments of the Pachapadra paleo–lake, Thar Desert, India: Chemie der Erde – Geochemistry, 68: 313–322.##
Schreiber, B.C., Friedman, G.M., Decima, A., Schreiber, E., 1976. Depositional environments of Upper Miocene (Messinian) evaporite deposits of the Sicilian Basin. Sedimentology, 23: 729–760.##
Schütt, B., 2004. The chemistry of playa–lake sediments as a tool for the reconstruction of Holocene environmental conditions – a case study from the central Ebro basin, in Smykatz–Kloss, W., Felix–Henningsen, P. (eds.), Palaeoecology of Quaternary Drylands, 5–30.##
Shearman, D.J., 1985. Syndepositional and late diagenetic alteration of primary gypsum to anhydrite. In: Schreiber, B.C.,##
Harner, H.L., (Eds.), Sixth International Symposium on Salt, Salt Institute, 1: 41–50.##
Shearman, D.J., Mossop, G.D., Dunsmore, H., Martin, M., 1972. Origin of gypsum veins by hydraulic fracture. Trans. Inst. Min. Metall, 81: 149–155.##
Sinha, R., Smykatz–Kloss, W., Stüben, D., Harrison, S.P., Berner, Z,. Kramar, U., 2006. Late Quaternary palaeoclimatic reconstruction from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India:Palaeogeography, Palaeoclimatology, Palaeoecology, 233: 252–270.##
Facies analysis, petrography and geochemistry of the Neogene gypsum deposits … 303
Sirocko, F., 1995. Abrupt change in monsoonal climate: evidence from the geochemical composition of Arabian Sea sediments: Kiel, University of Kiel, Habilitation thesis.##
Smykatz–Kloss, W., Knabe, K., Zöller, L., Rögner, K., Hüttl, C., 1998. Paleoclimatic changes in Central Sinai, Egypt: Paleoecology of Africa, 25: 143–155.##
Smykatz–Kloss, W., Smykatz–Kloss, B., Naguib, N., Zöller, L., 2004. The reconstruction of palaeoclimatological changes from mineralogical and geochemical compositions of loess and alluvial loess profiles, in Smykatz–Kloss, W., Felix–Henningsen, P. (eds.), Palaeoecology of Quaternary drylands, Lecture Notes on Earth Sciences: Berlin, Springer, 101–118.##
Smykatz–Kloss, W., Roy, P.D., 2010. Evaporite mineralogy and major element geochemistry as tools for palaeoclimatic investigations in arid regions: a syn–thesis. Boletín de la Sociedad Geologica Mexicana, 62: 379 390.##
Sonnenfeld, P., 1984. Brines and Evaporites. Academic Press, Orlando. Stefano, L., Vinicio, M., Marco, R., Charlotte, S.B., 2010. The primary lower gypsum in the Mediterranean: A new facies
interpretation for the first stage of the Messinian salinity crisis, Palaeogeography, palaeoclimatology, Palaeoecology,297: 83–99.##
Tangestani, M.H., Validabadi, K., 2014. Mineralogy and geochemistry of alteration induced by hydrocarbon seepage in an evaporite formation; a case study from the Zagros Fold Belt, SW Iran. Applied Geochemistry, 41: 189–195.##
Tekin, E., 2001. Stratigraphy, geochemistry and depositional environment of the celestine–bearing gypsiferous formations of the Tertiary Ulaş–Sivas Basin, East–Central Anatolia (Turkey). Turkish Journal of Earth Sciences, 10:35–49.##
Testa, G., Lugli, S., 2000. Gypsum–anhydrite transformations in Messinian evaporites of central Tuscany (Italy).Sedimentary Geology, 130: 249–268.##
Tunuklu, A., Ciflikli, M., Ozgur, F.Z., 2016. Determination of the trace elements effecting on the color of the gypsum mineral, International Journal of Engineering Research and Management (IJERM), 3: 16–19.##
Ullman, W.J., McLeod, L.C., 1986. The late–quaternary salinity record of lake Frome South Australia: evidence from Na+ in stratigraphically–preserved gypsum. Palaeogeography, palaeoclimatology, palaeoecology, 54: 153–169.##
Warren, J. K., 1999. Evaporites: Their evolution and economics. Oxford, UK, Blackwell Scientific, 438 pp.##
Warren, J. K., 2007. Evaporites: Sediments, Resources and Hydrocarbons. Berlin, Springer, 1041 pp.##
Warren, J. K., 2016. Evaporites: A Geological Compendium. London, Springer, 1822 pp.##
Watson, A., 1985. Structure, chemistry and origins of gypsum crusts in southern Tunisia and the central Namib Desert. Sedimentology, 32: 855–875.##
Wilmsen, M., Fürsich, F.T., Seyed–Emami, K., Majidifard, M.R., 2009a. An overview of the stratigraphy and facies development of the Jurassic System on the Tabas Block, east–central Iran, In: Brunet, M.–F., Wilmsen, M., Granath, J.W. (Eds.), South Caspian to Central Iran Basins. Geological Society of London, Special Publication, 312: 323–343.##
Yang, Y., Fang, X., Galy, A., Li, M., Appel, E., Liu, X., 2014. Paleoclimatic significance of rare earth element record of the calcareous lacustrine sediments from a long core (SG–1) in the western Qaidam Basin, NE Tibetan Plateau. Journal of Geochemical Exploration, 145: 223–232.##
Yousefi, M., 2000. Geologic Map of Eshtehard, Geological Survey of Iran, Tehran, scale 1:100000.##
Zhang, J., Nancollas, G.H., 1992. Influence of calcium/sulfate molar ratio on the growth rate of calcium sulfate dihydrate at constant supersaturation. Journal of Crystal Growth, 118: 287–294##