Biogeochemical exploration in Sari Gunay gold deposit, Northwestern Iran

Document Type : Research Paper


1 Department of Geochemistry, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran

2 Department of Plant Sciences, Faculty of Biologi cal Sciences, Kharazmi University, Tehran, Iran


Biogeochemistry is a useful tool for assessing geochemical dispersion patterns. Sari Gunay epithermal gold deposit was selected in order to assess the application of biogeochemical exploration for gold in northwestern Iran. In this study, four sites were sampled in a profile perpendicular to mineralized vein with a control site two km far-off mineralized vein. A sample from each dominant plant species (Silene conoidea, Achillea aleppica, Crepis corniculata, Centaurea virgata) was collected in each site and after preparation, analyzed using ICP-MS method. The results show that there is an inverse relationship between distance from mineralized vein and the concentration of gold and its associated elements in S. conoidea and A. aleppica species. S. conoidea has higher concentration of gold (303 ppb) than other species, therefore this species is a preferable bioindicator for gold mineralization. Biological absorption coefficients for Au and its pathfinder among all three species are increased over Au mineralization vein and decrease in following order S. conoidea> A. aleppica> C. corniculata. There is a need for further investigation on using S. conoidea as an As-phytoextractor (As=163.5 ppm) in remediation for arsenic contaminated sites, which also might be helpful during mining and mineral processing in Sari Gunay and neighboring deposits.


Article Title [Persian]

اکتشافات بیوژئوشیمیایی در محدوده کانسار طلای ساری گونی، شمالغرب ایران

Authors [Persian]

  • بهزاد مهرابی 1
  • حسن علیمحمدی 1
  • مهین فرهادیان بابادی 1
  • فرخ قهرمانی نژاد 2
1 دانشکده علوم زمین دانشگاه خوارزمی
2 دانشکده علوم زمین دانشگاه خوارزمی
Abstract [Persian]

بیوژئوشیمی یکی از روش های کاربردی برای ارزیابی پراکنش ژئوشیمیایی عناصر و بازسازی محیط زیست در نواحی آلوده است. در این پژوهش کاربرد اکتشافات بیوژئوشیمیایی در اکتشاف طلا در محدوده کانسار طلای ساری گونی در شمال غرب ایران مورد بررسی قرار گرفته است. به همین منظور در چهار محدوده در نیمرخی عمود بر کانی سازی شناخته شده (رگه گرمابی کوارتز-پیریت-استیبنیت-اورپیمنت) به همراه دو نمونه کنترلی در فاصله دو کیلومتری محدوده ها نمونه برداری از گیاهان انجام شد. یک نمونه از گونه های گیاهی غالب (S. conoidae, A. aleppica, C. corniculata, C. virgata) در هر محدوده برداشت و پس از آماده سازی به روش ICP-MS تجزیه شد. نتایج بررسیها نشان می دهد که غلظت طلا و عناصر همراه با فاصله گرفتن از رگه ها در گونه های S. conoidae و A. aleppica رابطه معکوس دارد. گونه S. conoidae دارای بیشترین مقدار غلظت طلا (303 میلی گرم در تن) است و گیاه نشانگر برای اکتشافات طلا در منطقه محسوب می شود. ضریب جذب زیستی طلا و عناصر ردیاب آن در سه گونه مورد بررسی در محدوده طلادار بیشترین مقدار را در مجاورت رگه معدنی نشان می دهد و دارای روند کاهشی S. conoidae> A. aleppica> C corniculata است. علاوه بر آن نیاز به انجام مطالعات بیشتر در مورد گونه S. conoidae بعنوان گونه بیش انباشتگر (ارسنیک با غلظت 5/163 میلی گرم در تن) وجود دارد زیرا در طی بهره برداری می توان از این گونه برای بازسازی مناطق آلوده در محدوده ساری گونی استفاده کرد.

Keywords [Persian]

  • اکتشافات بیوژئوشیمیایی
  • طلا
  • گونه های گیاهی نشانگر
  • ساری گونی
Anderson, C.W.N., Brooks, R.R., Chiarucci, A., Lacoste, C.J., Leblance, M., Robinson, B.H., Simcock, R., Stewart, R.B., 1999. Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration, 67: 407–415.
Badri, M., Springuel, I., 1994. Biogeochemical prospecting in the south-eastern desert of Egypt. Journal of Arid Environment, 28: 257–264.
Baker, A.J.M., 1981. Accumulators and excluders: strategies in the response of plants to trace metals. Journal of Plant Nutrition, 3: 643–654.
Baker, W.E., 1983. Gold in vegetation as a prospecting method in Tasmania, Australia. In: Organic Matter, Biological System and Mineral Exploration Symposium. University of California, Los Angeles, Feb. 14-18.
Baker, A.J.M., Brooks, R.R., 1989. Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery, 1: 81–126.
Banister, D.P., 1970. Geochemical investigations for gold, antimony and silver at Stibnite, Idaho. U.S. Bur. Mines, Rep. Invest. 7417.
Baroni, F., Boscagli, A., Protano, G., Riccobono, F., 1999. Antimony accumulation in Achilla ageratum, Planta golanceolata and Silene vulgaris growing in an old Sb- mining area. Environmental Pollution, 109: 347–352.
Boyle, R.W., Jonasson, I.R., 1973. The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration, 2: 251–296.
Boyle, R.W., 1979. The geochemistry of gold and its deposits. Geo. Surv. Can., Bull. 280, 584 pp.
Brooks, R.R., 1982. Biological methods of prospecting for gold. Journal of Geochemical Exploration, 17: 109–122.
Brooks, R.R., 1983. Biological Methods of Prospecting for Minerals. Wiley-Interscience, New York, 313 pp.
Brooks, R.R., Dunn, C.E., Hall, G.E.M. (Editors), 1995. Biological Systems in Mineral Exploration and Processing. Ellis Horwood, London, 538 pp.
Curtin, G.C., Lakin, H.W., Neuerburg, G.J., Hubert, A.E., 1968. Utilization of humus rich forest soil (mull) in geochemical exploration for gold. U.S. Geol. Surv., Circ. 562, 11 pp.
Curtin, G.C., Lakin, H.W., Hubert, A.E., Mosier, E.W., Watts, K.C., 1971. Utilization of mull (forest humus) layer in geochemical exploration in the Empire District, Clear Creek country, Colorado. U.S. Geol. Surv., Bull. 1278-B, 39pp.
Dunn, C.E., 1986. Biogeochemistry as an aid to exploration for gold, platinum and palladium in the northern forests of Saskatchewan, Canada. In: C.E. Nichols (Ed.) Exploration for Ore Deposits of the North American Cordillera. Journal of Geochemical Exploration 25: 21–40.
Dunn, C.E., 1995a. Biogeochemical prospecting for metals, in: R.R. Brooks, C.E. Dunn and G.E.M. Hall, (Eds.) Biological Systems in Mineral Exploration and Processing, pp. 371–425.
Dunn, C.E., 1995b. Mineral exploration beneath temperate forests: The information supplied by plants, Exploration Mining Journal, 4: 197–204.
Dunn, C.E., Cook, S.J., Hall, G.E.M., 2006a. Halogens in surface exploration geochemistry: Evaluation and development of methods for detecting buried mineral deposits (NTS 093F/03), Central British Columbia, In: Geological Fieldwork 2005 – a Summary of Field Activities and Current Research. Geoscience BC Rept. 2006-1, and Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey, Paper 2006-1: 259–280.
Dunn, C.E., Cook, S.J., Hall, G.E.M., 2006b. Halogens in surface exploration geochemistry: Evaluation and development of methods for detecting buried mineral deposits, Geoscience BC, Report 2005-008, 69 pp plus appendices.
Dunn, C.E., 2007. Biogeochemistry in Mineral Exploration. Sidney, BC, Canada, 462 pp.
Eun Jung, J., Nam Kim, J., Taek Chon, H., 2011. A biogeochemical orientation survey in the Moisan gold-mineralized area, Haenam district in Korea. Journal of Geochemical Exploration, 111: 152–159.
Girling, C.A., Peterson, P.J., Minski, M.J., 1978. Gold and arsenic concentration in plants as an indication of gold mineralization. Science of the Total Environment, 10: 79–85.
Girling, C.A., Peterson, P.J., Warren, H.V., 1979. Plants as indication of gold mineralization at Watson Bar, British Columbia, Canada. Economic Geology, 74: 902–907.
Huang, C.I., 1986. Biogeochemical and soil geochemical studies at the Borealis Mine, Mineral Country, Nevada. In: C.E. Nichols (Ed.) Exploration for Ore Deposits of the North American Cordillera, Journal of Geochemical Exploration, 25: 41-44.
Jones, R.S., 1970. Gold content of water, plants and animals. U.S. Geol. Surv., Circ. 625, 15 pp.
Kabata-Pendias, A., 2001. Trace elements in soils and plants (Third Edition), (CRC Press, Boca Raton), 432 pp.
Kovalevskii, A.L., 1979. Biogeochemical Exploration for Mineral Deposits. Oxonian Press Pvt., New Delhi, 136 pp.
Kovalevsky, A.L., Kovalevskaya, O.M., 1989. Biogeochemical haloes of gold in various species and parts of plants, Applied Geochemistry, 4: 369–374.
Kovalevsky, A.L., 1995. Barrier-free biogeochemical prospecting. In: Brooks RR, Dunn CE, Hall GEM (Eds.) Biological Systems in Mineral Exploration and Processing. Ellis Horwood, London, pp 283–300.
Markert, B., 1994. Progress report on the element concentrations cadastre project (ECCP) of INTERCOL/IUBS, International Union of Biological Sciences, 25th General Assembly, Paris, 54 pp.
McInnes, B.I.A., Dunn, C., Cameron, E.M., Kameko, L., 1996. Biogeochemical exploration for gold in tropical rain forest regions of Papua New Guinea. Journal of Geochemical Exploration, 57: 227–243.
Närhi, P., Middleton, M., Sutinen, R., 2013. Biogeochemical gold signatures in common juniper and Norway spruce at Suurikuusikko shear zone, Finnish Lapland. Journal of Geochemical Exploration, 128: 80–87.
Pereira, H.G., Renca, S., Saraiva, J., 2003. A case study on geochemical identification through principal component analysis Supplementary projection. Applied Geochemistry, 18: 37–44.
Perel’man, A.I., 1966. Landscape Geochemistry (Translation No. 676, Geol. Surv. Can., 1972) Vysshaya Shkola, Moscow, 388 pp.
Richards, J.P., Damien, W., Thomas, U., 2006. Geology of the Sari Gunay epithermal gold deposit, northwest Iran. Economic Geology, 101: 1455–1496.
Reid, N., Hill, S.M., 2010. Biogeochemical sampling for mineral exploration in arid terrains: Tanami Gold Province, Australia. Journal of Geochemical Exploration, 104: 105–117.
Schiller, P., Cook, G.B., Kitzinger-Skalova, A., Wolfl, E., 1973. The influence of the season variation for gold determination in plants by neutron activation analysis. Radiochemical and Radioanalytical Letter, 13: 283–286.
Shacklette, H.T., Lakin, H.W., Hubert, A.E., Curtin, G.C., 1970. Absorption of gold by plants. U.S. Geol. Surv., Bull. 1314-B, 23 pp.
Stednick, J.D., Klem, R.B., Riese, W.C., 1987. Temporal variation of metal concentrations in biogeochemical samples over the Royal Tiger mine, Colorado, part I: within year variation. Journal of Geochemical Exploration, 28: 75–88.
Valente, I., Minski, M.J., Peterson, P.J., 1986. Biogeochemical exploration for gold at a site in the Cordillera Cantabrian, Spain. Journal of Geochemical Exploration, 26: 249–258.
Warren, H.V., Delavault, R.E., Barakso, J., 1964. The role of arsenic as a pathfinder in biogeochemical prospecting. Economic Geology, 59: 1381–1386.
Warren, H.V., Hajek, J.H., 1973. An attempt to discover a “Carlin-Cortez” type of gold deposit in British Columbia. Western Miner., Oct.: 124–134.