Application of the rule extraction method to evaluate seismicity of Iran

Document Type : Research Paper


1 Department of earth sciences, college of sciences, Shiraz University, Shiraz, Iran

2 Department of geology, Shiraz Branch, Islamic Azad University, Shiraz, Iran


Assessing seismic hazards involves specifying the likelihood, magnitude and location of earthquakes in a region. Predicting the seismic hazards is the first step in reducing the impact of the damage caused by an earthquake.  In this study, to fully utilize all the known parameters which may possibly affect the occurrence of earthquakes (mb ≥ 4.5); a data-driven rule-extraction method called the Classification and Regression Tree (CART) was used to find the rules governing the earthquakes that occur. The method produces Predictive Rule Based Seismicity Map (PRBSM) of Iran that shows regions with high earthquake hazards. The rules are based on a large number of geophysical and geological parameters. The PRBSM has been built based on earthquake data from the year 1900 up to the end of 2006 and has been validated using earthquakes from 2007 to the end of 2015. In addition, this method allows for the identification of the most important combination of parameters associated with earthquakes. For example, the isostatic anomaly has the highest correlation with earthquakes in Iran. A distinctive character of this paper is the predictive rule based method which can create online as well as offline maps which are flexible and readily automated


Article Title [فارسی]

کاربرد روش استخراج قانون برای ارزیابی لرزه خیزی ایران

Author [فارسی]

  • احمد زمانی 2
Abstract [فارسی]

ارزیابی خطرات لرزه ای شامل تعیین احتمال، اندازه و محل وقوع زمین لرزه در یک منطقه می باشد. پیش بینی خطرات لرزه ای اولین گام در کاهش تاثیر آسیب های ناشی از زلزله است. در این مطالعه با بهره گیری از روش طبقه بندی و رگرسیون داده کاوی و استفاده از کلیه پارامترهای موجود که احتمالا بر وقوع زلزله بالای 4.5 ریشتر تاثیر می گذارند ، قوانین حاکم بر لرزه خیزی استخراج گردیده است. این قوانین بر اساس تعداد زیادی از پارامترهای زمین شناسی و ژئوفیزیکی ایران استخراج و بر اساس آنها نقشه پیش بینی کننده لرزه خیزی ایران، که مناطق با لرزه خیزی بالا رانشان میدهد، تهیه شده است. مدل بر اساس داده های لرزه ای از سال 1900 تا 2006 تهیه و بر اساس داده های لرزه ای سال 2007 تا 2015 اعتبار سنجی گردیده است. همچنین مدل، پارامترهایی که دارای بیشترین اهمییت در وقوع زلزله هستند را تعیین می نماید. نتایج حاکی از آنست که ناهنجاری ایزوستازی، دارای بالاترین اهمییت در وقوع زلزله در ایران می باشد. ویژگی شاخص این تحقیق ارائه روشی نوین برای تولید نقشه خطر لرزه ای به صورت آنلاین یا آفلاین که به صورت خودکار و به سهولت تهیه می شود، است.

Keywords [فارسی]

  • درخت تصمیم
  • مدل پیش بینی کننده
  • نقشه خطر لرزه ای
  • ایران
Ambraseys, N.N., 2001. Reassessment of earthquakes, 1900–1999, in the Eastern Mediterranean and the Middle East. Geophysical Journal International 45(2): 471–485.
Ashtari-Jafari, M., 2010. Statistical prediction of the next great earthquake around Tehran, Iran. Geodynamics 49, 14-18.
Berg, J.W., Gaskell, R., Rinehart, V., 1964. Earthquake energy release and isostasy. Bull Seismol Soc Am 54(2): 777–784.
Bonini, M., Corit, G., Sokoutis, D., Vannucci, G., Gasperini, P., Cloetingh, S., 2003. Insight from scaled analogue modeling into the seismotectonics of the Iranian region. Tectonophysics 376: 149-157.
Bouchon, M., 1973. Effect of topography on surface motion. Bull Seismol Soc Am 63, 615–632.
Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J., 1984. Classification and regression trees (Wadsworth, Inc. Monterey, U.S.A).
Caputo, M., Milana, G., Rayhorn, J., 1984. Topography and its isostatic compensation as a cause of seismicity of the Apennines. Tectonophys 102: 333–342.
Caputo, M., Manzetti, V., Nicelli, R., 1985. Topography and its isostatic compensation as a cause of seismicity; a revision. Tectonophys, 111: 25–39.
Chen, Y.T., Liu, KR., Zheng, J.H., Song, S.H., Liu, R.F., Lu, H.Y., Gu, F.Y., 2002. A review of the studies on the relationship between local gravity field changes and earthquakes. In: Sun S (ed) Advances in pure and applied geophysics. Meteorology Press, Beijing, 40–47 (in Chinese).
Clift, P., Shimizu, N., Layne, G., 2000. Fifty five million years of Tibetan evolution recorded in the Indus fan. EOS Trans., AGU 81: 277.
Davis, L.L., West, L.R., 1973. Observed effects of topography on ground motion. Bull Seismol Soc Am., 63: 283–298.
Daubie, M., Levecq, P., Meskens, N., 2002. A comparison of rough sets and recursive partitioning induction approaches: An application to commercial loans. International Transactions in Operational Research, 9: 681–694.
Dehghani, G.A., Makris, J., 1983. The gravity field and crustal structure of Iran. In: Geodynamic Project (Geotraverse) in Iran. Geol Suev Iran, 51–68.
Efron, B., & Tibshirani, R., 1997. Improvements on cross-validation: The 632 + Bootstrap Method. American Statistical Association, 92 (438): 548–560.
Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., Priestley, K.,. 2006. Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167: 761–778.
Geli, L., Bard, P.Y., Jullien, B.A., 1988. The effect of topography ground motion: a review and new results. Bulletin of the Seismological Society of America, 78 (1): 42-63.
Genti, M., Chery, J., Vernant, Ph., Rigo, A., 2016. Impact of gravity forces and topography denudation on normal faulting in Central–Western Pyrenees: Insights from 2D numerical models. Comptes Rendus Geoscience, 348: 173-183.
Han, J., Camber, K., 2006). Data Mining: Concepts and Techniques. Multisciences Press, 743pp.
Iftikhar, U. S. Toshinori, M., 2009. Application of rough set and decision tree for characterization of premonitory factors of low seismic activity. Expert System Application, 36: 102–110.
ISC, (2015). International Seismological Centre. Newbury, Berkshire, UK.
Johnston, M.J.S., 1997. Review of electric and magnetic fields accompanying seismic and volcanic activity. Surveys in Geophysics 18: 441-475.
Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. 14th Int. Conf. Artificial Intelligence 2(12): 1137–1143.
Lewis, R.J., 2000. An Introduction to Classification and Regression Tree (CART) Analysis. Torrance, California, Harbor-UCLA Medical Centre.
Li, Z.X., Li, H., 2009. Earthquake-Related gravity field changes at Beijing-Tangshan gravimetric network during 1987-1998 Study of Geophysics. Geodynamic 53:185-197.
McLachlan, G.J., Do, K.A., Ambroise, C., 2004. Analyzing microarray gene expression data. Wiley.
Mishra, D.C., Chandrasekhar, D.V., Singh, B., 2005. Tectonics and crustal structures related to Bhuj earthquake of January 26, 2001: based on gravity and magnetic surveys constrained from seismic and seismological studies. Tectonophysics 396: 195– 207.
Mohajer-Ashjai, A., Nabavi, M.S., 1982. Seismicity and fault map of Iran. AEOI. Scale: 1/2,500,000.
NEIC, (2015). National Earthquake Information Center. Colorado, USA.
Nowroozi, A.A., 1976. Seismotectonics Provinces of Iran. Bulletin of Seismological Society of America, 66: 1249-1276.
Reyes, J., Morales-Estebanb, A., Martínez-Álvarez, F., 2013. Neural networks to predict earthquakes in Chile. Applied Soft Computing, doi:10.1016/j.asoc.2012.10.014
Tavakoli, B., Ghafory-Ashtiany, M., 1999. Seismic Hazard Assessment of Iran. Annali DI Geofisica 42: 1013-1021.
Wu, Guijua,b., Tan, Hongboa,b., Yang, Guanglianga,b., Shen, Chongyang., 2015. Research on the relationship between geophysical structural features and earthquakes in Mid-Yunnan and the surrounding area. Geodesy and Geodynamics 6 (5): 384 -391.
Yousefi, E., 1989. Total magnetic intensity maps of Iran. Geol Suev Iran. Scale: 1/250,000.
Zamani, A., Hashemi, N., 2000. A comparison between seismicity, topographic relief, and gravity anomalies of Iranian Plateau. Tectonophys 327: 25–36.
Zamani, A., Khalili, M., 2006. Application of multivariate statistical methods for integrated mapping in Geology. 8th Iranian Statistical Conference, Shiraz University, Shiraz, Iran (in Persian).
Zamani, A., Agh-Atabai, M., 2009. Temporal characteristics of seismicity in the Alborz and Zagros region of Iran, using a multifractal approach. J Geodyn 47: 271–279.
Zamani, A., Khalili, M., Gerami, A., 2011. Computer-based self-organized zoning revisited: scientific criterion for determining the optimum number of zones. Tectonophysics, 510: 207-216.
Zamani, A., Sami, A., Khalili, M., 2012. Multivariate rule-based seismicity map of Iran: a data-driven modeling. Bulletin of Earthquake Engineering, 10: 1667-1683.
Zmazek, B., Todorovski, L., Dzeroski, S., Vaupotic, J., Kobal, I., 2003. Application of decision trees to the analysis of soil radon data for earthquake prediction. Applied Radiation and Isotopes, 58: 697-706.
  • Receive Date: 23 May 2016
  • Revise Date: 23 August 2016
  • Accept Date: 25 September 2016
  • First Publish Date: 25 September 2016