Evaluating hydrogeochemistry and turbidity problem of a carbonate aquifer, Shiraz, Iran

Document Type: Research Paper

Authors

1 Faculty of Earth Sciences, Shahrood University of Technology, Shahrood

2 Faculty of Earth Sciences, University of Shahrood, Shahrood, Iran

3 Faculty of Earth Sciences, Shahrood University of Technology

Abstract

Important karstic aquifers exist in west and southwest of Iran. Mansour-Abad Karstic region is located in Shiraz, southwest of Iran. It supplies the drinking water for the whole area by 4 pumping water wells, some of which have water turbidity problem. The present research aims to assess the hydrogeochemistry and turbidity problem in the karstic water production wells. The EC varies between 703 (in well No.1) and 1096 µmohs/cm (in well No.4). All water wells have similar ion concentration trend, indicating the same origin. The dissolution of gypsum during dedolomitization process induces the transformation of dolomite to calcite in the study area, especially in well No.4. The concentrations of most trace elements in the study area are lower than the standard value. Bacteriological water parameters are outside the accepted limits recommended by WHO for drinking water. Wells No. 1, 2 and 3 have turbidity values greater than limited values for drinking water which is about 5 TU; therefore, only well No.4 is used as drinking water resource in the study area. Most probably, interference of clay mineral layers with groundwater flow is one of the main causes of turbidity in some wells.

Keywords


Article Title [Persian]

بررسی هیدروژئوشیمی و توربیدیتی سفره کارستی در شیراز، ایران

Abstract [Persian]

سفره های کارستی مهمی در غرب و جنوب غرب ایران وجود دارد که یکی از آنها منطقه کارستی منصور آباد در استان فارس-شیراز می باشد. آب شرب این منطقه توسط چهار حلقه چاه پمپاژ از این سفره کارستی تامین می گردد که متاسفانه آب برخی از این چاهها دچار مشکل کدورت شده اند. مقدار هدایت الکتریکی در این منطقه از 703 تا 1096 µmohs/cm متغیر می باشد. روند تغییرات غلظت یونهای اصلی در تمامی چاهها مشابه بوده که دلیل بر یکسان بودن منشا آنها دارد. یکی از فرایندهای مهم ژئوشیمایی در منطقه دولومیت زدایی بوده که در اثر انحلال ژیپس و بالتبع انحلال دولومیت و رسوب کلسیت اتفاق افتاده است. مقادیر غلظت فلزات سنگین در آبهای منطقه مورد مطالعه کم و در حد شرب و استاندارد جهانی می باشد. از نظر بیولوژیکی، این آبها استاندارد لازم جهانی جهت شرب را دارند. آب چاههای شماره 1، 2 و 3 با توربیدیتی حدود 5 NTU دارای مشکل کدورت بوده و بالاتر از حد استاندارد جهت شرب می باشند؛ بنابراین فقط چاه شماره 4 جهت شرب در این پمپاژ شده و مورد استفاده قرار می گیرد. به احتمال زیاد بدلیل وجود بین لایه های رسی در سازند کارستی منطقه و انحلال و فرسایش آنها در طی جریان آب زیرزمینی در بین آنها، می تواند دلیل اصلی بروز مشکل کدورت در آب این چاهها در نظر گرفت.

Keywords [Persian]

  • آب شرب
  • هیدروژئوشیمی
  • سفره های کارستی
  • میکروارگانیسم توربیدایتی
Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its pro-foreland evolution. Am. J. Sci. 304: 1–20.

Auckenthaler, A., Huggenberger, P., 2003. Pathogene Mikroorganismen im Grund- und Trinkwasser. Transport Nachweismethoden Wassermanagement (Pathogenic microorganisms in groundwater and drinking water. Transport, analytical methods and water management), 196.

Bagheri, R., Nadri, A., Raeisi, E., Eggenkamp, H.G.M., Kazemi, G.A., Montaseri, A., 2014.  Hydrochemical and isotopic (δ18O, δ2H, 87Sr/86Sr, δ37Cl and δ81Br) evidence for the origin of saline formation water in a gas reservoir, Chemical Geology. 384: 62–75.

Bagheri, R., Nadri, A., Raeisi, E., Kazemi, G.A., Eggenkamp, H.G.M., Montaseri, A., 2013. Origin of brine in the Kangan gasfield: isotopic and hydrogeochemical approaches. Environ Earth Sci. DOI 10.1007/s12665-013-3022-7.

Bagheri, R., Nadri, A., Raeisi, E., Shariati, A., Mirbagheri, M., Bahadori, F., 2013. Chemical evolution of a gas-capped deep aquifer, southwest of Iran. Environ Earth Sci. doi:10.1007/s12665-013- 2705-4.

Bordenave, M.L., 2008. The origin of Permo-Triassic gas accumulations in the Iranian Zahros fold belt and contiguous offshore areas: a review of the Paleozoic petroleum system. J Petrol Geol. 31: 3–42.

Bruce, Banoeng-Yakubo, S.M., 2008. Hydrochemical characterization of groundwater in the Akyem area, Ghana. The Electronic Journal of the International Association for Environmental Hydrology On the World Wide Web, 16.

Chadha, D.K., 1999. A proposed new diagram for geochemical classification of natural water and interpretation of chemical data, Hydrogeology Journal. 7: 431–439.

Drew, D.H.H., 1999. Karst Hydrogeology and Human Activities impact. Consequences and Implications International Contributions to hydrogeology, 20.

Dupont, M.F.B., 2007. Using turbidity dynamics and geochemical variability as a tool for understanding the behavior and vulnerability of a karst aquifer. Hydrogeology Journal. 689 –704.

Falcon, N.L., 1967. Southern Iran, Zagros Mountains. In: Spencer AM (ed) Mesozoic-Cenozoic orogenic belts. Geological Society London. 4: 199- 211 (Spec Publ)

Gabber, M.,1998. Water Wells Producing Sand or Turbidity. Drinking Water and Radiological Protection Division.

Gibs, F.W., 2001. U.S. Geological Survey TWRI Book 9. U.S.

Hargreaves, j.A., 1999. control of clay turbidity in ponds. SRAC publication.

James, G.A., Wyned, J.G., 1965. Stratigraphic nomenclature of Iranian oil consortium agreement area. Am Assoc Petrol Geol Bull . 49: 2188–2245

Knauth, L.P., 1988. Origin and mixing history of brines, of Palo Duro Basin, Texas, USA. Appl Geochem. 3: 455–474

Massei, N., 2001. Transport de particules en suspension dans l’aquife`re crayeux karstique et a` l’interface craie/alluvions. PhD Thesis, Rouen

Miliaresis, G.C., 2001. Geomorphometric mapping of Zagros ranges at regional scale. Comput Geosci 27:775–786

Mohammadi, Z., Bagheri, R., Jahanshahi R., 2010. “Hydrogeochemistry and geothermometry of Changal thermal springs, Zagros region, Iran”. Geothermics. 39: 242–249.

Mondal, N.C., Singh, V.P., Singh, V.S., Saxena, V.K., 2010. Determining the interaction between groundwater and saline water through groundwater major ions chemistry. Journal of Hydrology. 388: 100–111.

Nebbache, S.L.M.A., 1997. Turbidity and microorganisms in a karst spring. Europ J Soil Biol, 89–103.

Plummer, L.N., Busby, J.F., Lee, R.W. and Hanshaw, B.B., 1990. Geochemical modeling in the Madison aquifer in parts of Montana, Wyoming and South Dakota. Water Resour. Res. 26: 1981–2014.

Richter, B.C., Kreitler, C.W., 1993. Geochemical Techniques for Identifying Sources of Ground-Water Salinization. CRC Press, Boca Raton

Stocklin, J., Setudehnia, A., 1977. Stratigraphic Lexicon of Iran. Geological Survey of Iran, Tehran, Iran, 376 pp.

Taheri-Tizro, A., , Voudouris, K.S., 2008. Groundwater quality in the semi-arid region of the Chahardouly basin, West Iran. Hydrol. Process. 22: 3066- 3078

Talbot, C.J., Jarvis, R.J., 1984. Age, budget and dynamics of an active salt extrusion in Iran. J Struct Geol 6:521–533

Todd, D.K., Mays, L.W., 2005. Groundwater hydrology. John Wiley & Sons Inc.

Wicks, C.E., 1997. Geochemical evolution of a karst stream in Devils Icebox Cave, Missouri, USA. J.Hydrol, 30–41.

WHO. 1983. guidlines to drinking water quality world helth organisation. geneva.