Measuring infiltration rate and hydraulic conductivity in a dry well in a thin overburden

Document Type : Research Paper


1 univercity

2 Faculty of Earth Sciences,University of Shahrood, Shahrood, Iran

3 Khuzestan Water and Power Authority, Ahvaz, Iran


IInfiltration rate and hydraulic conductivity are immensely important parameters for evaluating the hydrology of subsurface environments. Specifically, in disposal wells schemes and in artificial recharge plans both properties must be correctly assessed to better analyze the performance of these installations. In a new research, tanker water and rainfall runoff were injected into a 22.5 m deep well dug in a 15 m thick dry overburden and the underlying impermeable marl bedrock (7.5 m) to evaluate the feasibility of using the well to store winter runoff in the overburden for recovery in the summer. Rates of rise and fall in the hydraulic head were measured, and infiltration rate in various depths were calculated. Also, hydraulic conductivity of the overburden was calculated using particle distribution curves of the overburden samples. Infiltration rate showed close correlation with the hydraulic conductivity. Maximum infiltration rate occurs at depths of 10-11 m; depth of 10 m is the most conductive interval. New findings have come out of this experience including 1. negative correlation between maximum head generated in a specific injection event and the rate of infiltration and 2. the important role of the contact zone between bedrock and the overburden in draining the injected water


Article Title [فارسی]

اندازه گیری نرخ نفوذ و هدایت هیدرولیکی در یک چاه خشک در نهشته های واریزه ای کم ضخامت

Authors [فارسی]

  • غلامعباس کاظمی 2
  • نورعلی داموغ 3
2 عضو هیأت علمی دانشگاه شاهرود
3 مشاور ( کارشناس ارشد سازمان آب و برق خوزستان
Abstract [فارسی]

نرخ نفوذ و هدایت هیدرولیکی از پارامترهای بسیار مهم برای ارزیابی هیدرولوژی محیط های زیر سطحی می‌باشند. خصوصا در بحث چاه های دفع آبهای اضافی و طرح های تغذیه مصنوعی هر دو ویژگی باید با دقت بررسی شوند تا فهم بهتری از عملکرد این طرحها بدست آید. در این تحقیق جدید، آب تانکر و رواناب بارندگی در یک چاه با عمق 5/22 متر، که 15 متر از آن در نهشته های واریزه ای خشک و 5/7 متر پایین آن در سنگ بستر مارنی نفوذ ناپذیر قرار دارد تزریق گردید تا امکان استفاده از این چاه برای ذخیره رواناب بارندگی در زمستان و بازیافت آن در تابستان مورد ارزیابی قرار گیرد. با استفاده از داده های سرعت بالا آمدن و پایین رفتن هد هیدرولیکی، نرخ نفوذ در اعماق مختلف چاه محاسبه گردید. همچنین هدایت هیدرولیکی نهشته های واریزه ای با استفاده از نمودار توزیع دانه بندی نمونه های براشت شده برآورد گردید. نتایج نشان داد که نرخ نفوذ ارتباط نزدیکی با هدایت هیدرولیکی دارد به طوریکه حداکثر نرخ نفوذ در اعماق 10 و 11 متری و حداکثر هدایت هیدرولیکی در عمق 10 متری می‌باشد. یافته‌های جدید حاصل از این آزمایش شامل 1) وجود ارتباط معکوس بین حداکثر هد ایجاد شده در هر مرحله از تزریق و نرخ نفوذ و 2) نقش کلیدی زون ارتباطی بین سنگ بستر و نهشته های واریزه ای در فرار آب تزریق شده، میباشد.

Keywords [فارسی]

  • چاه تغذیه
  • تزریق آب
  • نرخ نفوذ
  • هدایت هیدرولیکی
  • دانه بندی خاک
Cahill, M., Derek, C., Sowles, M,. 2011. Dry wells. Oregon State University, From Oregon Sea Grant, Corvallis, 8 pp.
Carman, P.C., 1937. Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15:150 pp.
Carman, P.C., 1956. Flow of gases through porous media. Butterworths scientific publications, London 6-12.
Carrier, W.D., 2003. Goodbye, Hazen; hello, Kozeny-Carman. ASCE Journal of Geotech Geoenviron Eng. 129 (11): 1054–1056.
Cheng, C., Chen, X.H., 2007. Evaluation of methods for determination of hydraulic properties in an aquifer-aquitard system hydro logically connected to river. Hydrogeol Journal 15: 669–678.
Connecticut Department of Environmental Protection, 2004. Connecticut Storm water Quality Manual.
Diamond, J., Shanley, T., 1998. Infiltration rate assessment of some major soils. End of Project Report, Armis 4102, Teagasc, Dublin.
Environmental Protection Agency, 2013. Evaluation of dry wells and cisterns for storm water control: Millburn Township, NJ. EPA 600/R–12/600.
Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice Hall, Englewood Cliffs, NJ, 604 pp. 
Hazen, A., 1892. Some physical properties of sands and gravels. Massachusetts State Board of Health, 24th annual report, Boston, pp 539–556.
Heidari, M.M., 2011. Determination of permeability coefficient based on distribution curve. Third national cconference on irrigation and drainage network, Ahvaz, March 1-3, 2011.
Ishaku, J.M., Gadzama, E.W., Kaigama, U., 2011.Evaluation of empirical formulae for the determination of hydraulic conductivity based on grain-size analysis. Journal of Geology and Mining Res 3(4): 105–113.
Johnson, A.I., 1963. A field method for measurement of infiltration. U. S, Geological Survey Water Supply Paper 1544–F. 
Kozeny, J., 1927. Uber kapillare leitung des wassers in boden: Sitzungsber [On capillary flow of water in soil], Sitz Ber Akad Wiss Wien, Vienna, 136: 271–306.
Massmann, J., 2004. An approach for estimating infiltration rates for storm water infiltration    dry wells. Washington State Department of Transportation Technical Monitor, 68 pp.
Mousavi Harami, A., 2007. Sedimentology. 8th edition, Razavi Ghods Astan, Mashhad, 474 pp. (In Persian).
McWhorter, D.B., Sunada, D.K., 1977. Groundwater Hydrology and Hydraulics. Water  Resources Publications, Fort Collins, CO, 290 pp.
Odong, J., 2007. Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. Journal Am Sci. 3(3): 54–60.
Philips, C.E., Kitch, W.A., 2011. A review of methods for characterization of site infiltration with design recommendations. In: Proceedings of 43rd Symposium on Engineering Geology and Geotechnical Engineering, Las Vegas, Nevada.
Ren, Lu., Yan, Xu., 2014. The streambed sediment grain size analysis and empirical formula of vertical hydraulic conductivity of Wei River. Journal of Applied Sciences and Engineering Research. 3(2): 411–421.
Schwartz, F.W., Zhang, H., 2003. Fundamentals of Groundwater, John Wiley & Sons, 583 pp.
Steiakakis, E., Gamvroudis, C., Alevizos, G., 2012. Kozeny-Carman equation and hydraulic conductivity of compacted clayey soils, Geomaterials 2: 37–41.
Terzaghi, K., Peck, R.B., 1964. Soil Mechanics in Engineering Practice. Wiley, New York.
Todd, D.K., Mays, L.W., 2005.Groundwater Hydrology, Wiley, Hoboken, NJ, 636 pp.
Van Hoorn, J.W.,1979. Determining hydraulic conductivity with the inversed auger hole and  infiltrometer methods. In: Wesseling, J. (ed.), Proceedings of the International Drainage Workshop, ILRI Publication 25, Wageningen, The Netherlands, ILRI, pp. 150–154.
Vukovic, M., Soro, A., 1992. Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Publications, Littleton, Colorado, 83 pp
Weight, W.D., Sonderegger, J.L., 2001. Manual of applied field hydrogeology. McGraw-Hill, New York, 608 pp.
Volume 6, Issue 1 - Serial Number 22287825
Winter and Spring
March 2016
Pages 63-73
  • Receive Date: 28 November 2015
  • Revise Date: 25 May 2016
  • Accept Date: 26 June 2016
  • First Publish Date: 26 June 2016