Geochemistry and origin of elements of Upper Triassic Olang coal deposits in northeastern Iran

Document Type: Research Paper


1 Assistant Prof. of Economic Geology, School of Earth Sciences, Damghan University

2 MSC of Economic Geology, School of Earth Sciences, Damghan University, Damghan, Iran


The Olang area is a part of Gheshlagh-Olang synclinal, which is a member of eastern Alborz coal basin and is situated at a distance of
70 km northeast of Shahroud city. Coal-bearing strata of this region are part of the Shemshak group (Upper Triassic to Lower Jurassic).
Samples from the 9 coal seams of the Olang coal deposits were collected and ashed. The aim of this study is to determine the
occurrence and distribution of major and trace elements in the coal ashes of Upper Triassic Olang coal deposits in northeastern Iran.
The concentration of the elements in the coal ashes of the Olang region is higher than the Clarke value and the average of World coal
ash. The coal ashes have been enriched in Zn, Mn, and P in comparison with the average of the World coal ash. The correlation
coefficient analysis on the major and trace elements in the ash yielded in four groups including: A (Rb, K, Cs, Si), B (Al), C (Tl, Ca,
Nb, Ta, V) and D (Cr, Hf, Sn, Zr, Th, Zn, Ti, Ba, W, Mg, Na, P, Sr, Co, Cu, Mo, Ni, U, Fe, Ca). The first two groups are strongly
correlated with ash yield and mainly have an inorganic affinity. C and D groups are negatively or less strongly correlated with ash
yield. The rare earth elements' abundances are negatively correlated with the ash yield and exhibit an organic affinity. Based on
correlation, cluster analyses, and rare earth elements' distribution characteristics, two separate modes of occurrence can be considered
for rare earth elements: 1) Accompanying phosphate minerals with organic origin (phosphorites) or phosphate organic materials, and 2)
Accompanying the vitrinite maceral group.


Article Title [Persian]

ژئوشیمی و منشاء عناصر در معادن زغالسنگ تریاس فوقانی اولنگ، شمال شرق ایران

Authors [Persian]

  • نادر تقی پور 1
  • زهرا سلیمانی مارشک 2
1 عضو هئیت علمی دانشکده علوم زمین، دانشگاه دامغان
Abstract [Persian]

این مطالعه به بررسی مدل رخداد و توزیع عناصر اصلی و فرعی نهشته‌های زغالسنگی منطقه اولنگ با سن تریاس بالایی واقع در شمال شرق ایران می‌پردازد. نمونه‌های زغال‌سنگی از 9 لایه زغال‌سنگی منطقه اولنگ جمع‌آوری و به خاکستر تبدیل شدند. غلظت عناصر در خاکستر زغالسنگ‌های منطقه اولنگ بیشتر از مقدار کلارک و همچنین بیشتر از میانگین خاکستر زغالسنگ‌های جهان می‌باشد. عناصر اصلی و فرعی لایه‌های زغال‌سنگی منطقه اولنگ بر اساس ضرایب همبستگی‌شان با بازده خاکستر در چهار گروه (Rb, K, Cs, Si)A ، (Al)B ، (Tl, Ca, Nb, Ta,V)C و (Cr, Hf, Sn, Zr, Th, Zn, Ti, Ba, W, Mg, Na, P, Sr, Co, Cu, Mo, Ni, U, Fe, Ca)D جای می‌گیرند. دو گروه اول ضریب همبستگی قوی با درصد حاکستر نشان می دهند و عمدتا دارای قرابت غیر آلی می‌باشند.بر اساس آنالیز همبستگی، آنالیز خوشه‌ای و ویژگی‌های توزیع عناصر نادر خاکی دو شکل رخدادی مجزا برای این عناصر می‌توان در نظر گرفت: 1) همراهی این عناصر با کانی‌های فسفاته‌ای چون مونازیت یا مواد آلی فسفاته. 2) همراهی با گروه ماسرالی ویترینیت.

Keywords [Persian]

  • ژئوشیمی
  • زغالسنگ
  • اولنگ
  • ایران
Birk, D., White, J.C., 1991. Rare earth elements in bituminous coals and under clays of the Sydney Basin, Nova Scotia:
Element sites, distribution, mineralogy. International Journal of Coal Geology, 19: 219-251.
Chou, C.L., 1997. Abundances of sulfur, chlorine, and trace elements in Illinois Basin coals, U.S.A. In: Proceedings of the
14th International Pittsburgh Coal Conference, Taiyuan, China, September 23–27, Section, 1: 76–87.
Dai, S.F., Ren, D.Y., Tang, Y.G., Shao, L.Y., Li, S.S., 2002. Distribution, isotopic variation and origin of sulfur in coals in
the Wuda coalfield, Inner Mongolia, China. International Journal of Coal Geology, 51: 237 - 250.
Dai, S.F., Ren, D.Y., Hou, X.Q., Shao, L.Y., 2003. Geochemical and mineralogical anomalies of the late Permian coal in
the Zhijin coalfield of southwest China and their volcanic origin. International Journal of Coal Geology, 55: 117–138.
Dai, S.F., Li, D., Chou, C.L., Zhao, L., Zhang, Y., Ren, D.Y., Ma, Y.W., Sun, Y.Y., 2008. Mineralogy and geochemistry
of boehmite-rich coals: new insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China.
International Journal of Coal Geology, 74: 185–202.
Dai, S., Luo, Y., Seredin, V.V., Ward, C.R., Hower, J.C., Zhao, L., Liu, S., Zhao, C., Tian, H., Zou, J., 2014. Revisiting
the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of
minerals and trace elements. International Journal of Coal Geology, 122: 110–128.
Eskenazy, G.M., 1987a. Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria. International Journal of
Coal Geology, 7: 301- 314.Eskenazy, G.M., 1987b. Rare earth element and Yttrium in lithotypes of Bulgaria coals. Organic Geochemistry 2, 83 - 89.
Eskenazy, G.M., 1999. Aspects of the geochemistry of rare elements in coal: an experimental approach. International
Journal of Coal Geology, 38: 285 - 295.
Finkelman, R.B., Fiene, F.L., Painter, P.C., 1981. Determination of kaolinite in coal by infra-red spectroscopy- a comment.
Fuel, 60: 643- 644.
Finkelman, R.B., 1993. Trace and minor elements in coal. In: Engel, M. H., Macko, S. A. (Eds.), Organic geochemistry.
Plenum, New York, 593- 607.
Finkelman, R.B., 1994. Modes of occurrence of potentially hazardous elements in coal: levels of confidence. Fuel
Processing Technology, 39: 21–34.
Finkelman, R.B., 1995. Modes of occurrence of environmentallysensitive trace elements in coal. In: Swaine, D.J.,
Goodarzi, F. (Eds.), Environmental Aspects of Trace Elements in Coal. Kluwer Academic Publishing, Dordrecht, 24–
Fürsich, F. T., Wilmsen, M., Seyed-Emami, K. & Majidifard, M. R., 2009. Lithostratigraphy of the Upper Triassic-Middle
Jurassic Shemshak Group of northern Iran. In: Brunet, M.F., Wilmsen, M. & Granath, J. W. (eds) 2009. South Caspian
to Central Iran Basins. Geological Society, London, Special Publications, 312: 129-160.
Goodarzi, F., 1987. Concentration of elements in Lacustrine coals from Zone A Hat Creek Deposit No 1, British
Columbia, Canada. International Journal of Coal Geology, 8: 247–268.
Gupta, R., Wall, T.F., Baxter, L.A., 1999. The impact of mineral impurities in solid fuel combustion. Kluwer Academic
Publication, New York. 767pp.
Haskin, L.A., Haskin, M.A., Frey, F.A., Wilderman, T.R., 1968. Relative and absolute terrestrial abundances of the rare
earths. In: Ahrens, L.H. (Ed.), Origin and distribution of the elements. Oxford, Pergamon, 889–912.
Hirano, S., Suzuki, K., 1996. Exposure, metabolism and toxicity of rare earths and related compounds. Environmental
Health Perspectives 104, 85 - 95.
Huang, W.H., Yang, Q., Tang, D.Z., Tang, X.Y., Zhao, Z.G., 2000. Rare earth element geochemistry of Late Paleozoic
coals in North China. Acta Geologica Sinica, 74: 74–83.
Ismael, I.S., 2002. Rare earth elements in Egyptian phosphorites. China Journal Geochemistry, 21: 19 - 28.
ISO 1171, 1981. Solid mineral fuels, Determination of Ash. International Organisation for Standardisation -ISO, Geneva,
2 pp.
Ketris, M.P., Yudovich, Y.E., 2009. Estimations of Clarkes for carbonaceous biolithes: world average for trace element
contents in black shales and coals. International Journal of Coal Geology, 78: 135 - 148.
Kortenski, J., Bakardjiev, S., 1993. Rare earth and radioactive elements in some coals from the Sofia, Svoge and Pemik
Basins, Bulgaria. International Journal of Coal Geology, 22: 237–246.
Kortenski, J., Sotirov, A., 2002. Trace and major element content and distribution in Neogene lignite from the Sofia Basin,
Bulgaria. International Journal of Coal Geology, 52: 63–82.
Liu, G.J., Zheng, L.G., Wu, E.J., Peng, Z.C., 2006. Depositional and Chemiscal Characterization of Coal From Yayu
coalfield. Energy Exploration & Exploitation, 24 (6): 417–438.
McDonald, J.W., Ghio, A.J., Sheehan, C.E., Bernhardt, P.F., Roggli, V.L., 1995. Rare earth (cerium oxide)
pneumoconiosis: analytical scanning electron microscopy and literature review. Modern Pathology, 8: 859 - 865.
McDonough, W.F., Sun, S., 1995. The composition of the Earth. Chemical Geology, 120: 223 - 253.
Nabavi, M.H., Seyed-Emami, K., 1977. Sinemurian ammonites from the Shemshak Group of North Iran (Semnan area,
Alborz).Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 153: 70- 85.
Pairon, J.C., Roos, F., Sebastien, P., Chemak, B., Abdalsamad, I., Bernaudin, J.F., Bignon, J., 1995. Bio persistence of
cerium in human respiratory tract and ultra structural findings. American Journal of Industrial Medicine, 27: 349 - 358.
Palmer, C.A., Lyons, P.C., Brown, Z.A., Mee, J.S., 1990. The use of trace element concentrations in vitrinite concentrates
and companion whole coals (hvA bituminous) to determine organic and inorganic associations. GSA Special Paper, 248:
55 - 62.
Querol, X., Fernandez-Turiel, J.L., Lopez-Soler, A., 1995. Trace elements in coal and their behavior during combustion in
a large power station. Fuel 74: 331–343.
Rad, F.K., 1986. A Jurassic delta in Eastern Alborz, NE Iran. Journal of petroleum geology 9 (3): 281-294.
Razavi-Armagani, M.B., Moenoalsadat, S.H., 1994. Treatise on the Geology-Geological Survey of Iran. 286 pp (in
Rudnick, R.L., Gao, S., 2004. Composition of the continental crust. Treatise on geochemistry, 3: 1-64.
Schatzel, S.J., Stewart, B.W., 2003. Rare earth element sources and modification in the Lower Kittanning coal bed,
Pennsylvania: implications for the origin of coal mineral matter and rare earth element exposure in underground mines.
International Journal of Coal Geology, 54: 223 - 251.
Seredin, V.V., 1996. Rare earth element-bearing coals form the Russian Far East deposits. International Journal of Coal
Geology, 30:101–129. Seredin, V.V., Dai, S., 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International
Journal of Coal Geology, 94: 67–93.
Seyed-Emami, K., Fürsich, F.T., Schairer, G., 2001. Lithostratigraphy, ammonite faunas and palaeoenvironments of
Middle Jurassic strata in North and Central Iran. Newsletters on Stratigraphy, 38: 163 -184.
Seyed-Emami, K., Fürsich, F.T., Wilmsen, M., Cecca, F., Majidfard, M.R., Schairer, G., Shekarifard, A., 2006.
Stratigraphy and ammonite fauna of the upper Shemshak Formation (Toarcian–Aalenian) at Tazareh, eastern Alborz,
Iran. Journal of Asian Earth Sciences, 2: 259 - 275.
Solaymani, Z., Taghipour, N., 2012. Petrographic characteristics and palaeoenvironmental setting of Upper Triassic Olang
coal deposits in northeastern Iran. International Journal of Coal Geology, 92: 82 - 89.
Spears, D.A., Zheng, Y., 1999. Geochemistry and origin of elements in some UK coals. International Journal of Coal
Geology, 38: 161 - 179.
Spears, D.A., Borrego, A.G., Cox, A., Martinez-Tarazona, R.M., 2007. Use of laser ablation ICP-MS to determine trace
element distributions in coals, with special reference to V, Ge and Al. International Journal of Coal Geology, 72: 165–
Sulotto, F., Romano, C., Berra, A., Botta, C., Rubino, G.F., Sabbioni, E., Pietra, R., 1986. Rare earth pneumoconiosis: a
new case. American Journal of Industrial Medicine, 9: 567 - 575.
Swaine, D.J., Goodarzi, F., 1995. Environmental aspect of trace elements in coal. Kluwer Academic Publishers, the
Netherlands, 262 pp.
Wang, Z.G., Yu, X.Y., and Zhao, Z.H., 1989. Geochemistry of Rare Earth Elements. Science Press, Beijing, 310–313 (in
Wang, W.F., Qin, Y., Sang, S.X., Jiang, B., Zhu, Y.M., Guo, Y.H., 2007. Sulfur variability and element geochemistry of
the No. 11 coal seam from the Antaibao mining district, China. Fuel, 86: 777 - 784.
Ward, C.R., (Ed.), 1984. Coal Geology and Coal Technology. Blackwell, Melbourne, 345 pp.
Willett, J.C., Finkelman, R.B., Mroczkowski, S., Palmer, C.A., Kolker, A., 2000. Semi-quantitative determination of the
modes of occurrence of elements in coal: results from an international round robin project. In: Davidson, R.M. (Ed.),
Modes of Occurrence of Trace Elements in Coal. Reports from an International Collaboratve Programme. IEA Coal
Research, London, UK.CD-ROM.
Yazdi, M., 2012. Geological and Geochemical Features of Alborz Basin Coal Deposits, Iran. Journal of Sciences, Islamic
Republic of Iran, 23: 163-169.
Yazdi, M., Esmaeilnia Shiravani, A., 2004. Geochemical properties of coals in the Lushan coal field of Iran. International
Journal of Coal Geology, 60: 73 - 79.
Zahrab, A., 2004. Geological map of Khosh Yeilagh, scale.1:100,000. Geological survey and Mineral exploration of Iran.
Zhao, Z.G., 2002. Research on Rare Earth Element Geochemistry of Coal bearing Strata. Coal Industry Publishing House,
Beijing, 37 pp (in Chinese).