Estimation of Cerchar Abrasivity Index Using Petrographical, Textural and Mechanical Rock characteristics in Igneous Rocks

Document Type : Research Paper

Authors

1 Department of Geology, Faculty of Sciences, Bu-Ali Sina University, Hamedan, Iran

2 Department of Mining Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran

3 Département de géologie et de génie géologique, Faculté des sciences et de génie, Université Laval, Québec, Canada

4 Department of Geology, Faculty of Sciences, Ferdowsi University, Mashhad, Iran

Abstract

Cerchar Abrasivity Index (CAI) test is commonly used to assess the abrasiveness of rocks due to its efficiency and simplicity. This research focuses on estimating CAI values based on the petrographical, textural, and mechanical characteristics of igneous rock. The study examines the potential correlation between CAI values, petrographical, and textural characteristics using a dataset comprising 15 samples from 5 different types of igneous rocks. The researchers employed a range of statistical analyses, including Pearson's correlations, Simple and Multiple linear and non-linear regression, and artificial neural network (ANN) analyses. These methods were used to examine the relationship between CAI values and various parameters. CAI has a direct correlation with Texture Coefficient (TC), Heterogeneity (H), Saturation Index (SI), Uniaxial Compressive Strength (UCS), Abrasivity Index (ABI), and Rock Abrasivity Index (RAI), with the exception of Feldspathic Index (FI) and Porosity (P). Results showed that by increasing CAI values, the TC, H, RAI, ABI, and SI increased, and FI decreased. By increasing TC and H, the percentage of quartz increases, and alkali feldspar decreases. The study suggests SI, FI, TC, and H are appropriate in assessing the abrasiveness of igneous rocks. Validation of the results displayed that new models can be used for predicting CAI with acceptable accuracy.

Keywords

Main Subjects


Article Title [Persian]

_

Abu Bakar, M.Z., Majeed, Y., Rostami, J., 2016. Effects of rock water content on CERCHAR abrasivity index. Wear, 368-369:132-145.
AFNOR. 2000. Determination du pouvoir abrasive d’une rochePartie 1: Essai de rayure avec une pointe (NF P 94-430-1) (In Paris).
ANON. 1977. The Description of Rock Masses for Engineering Purposes. Engineering Group Working Party Report. Quaternary engineering geology, 10: 43-52.
Alber, M., Yarali, O., Dahl, F., Bruland, A., Kasling, H., Michalakopoulos, T. N., Cardu, M., Hagan, P., Aydm, H., Ozarslan, A., 2014. ISRM suggested a method for determining the abrasivity of rock by the CERCHAR abrasivity test. Rock Mechanics and Rock Engineering, 47: 261-266.
Aligholi, S., Lashkaripour, G.R., Ghafoori, M., 2018. Estimating engineering properties of igneous rocks using semi-automatic petrographic analysis. Bulletin of Engineering Geology and the Environment, 78: 2299-2314.
Aydin, H., 2019. Investigating the effects of various testing parameters on Cerchar abrasivity index and its repeatability. Wear, 418-419: 61-74.
Balani, A., Chakeri, H., Barzegari, G., Ozcelik, Y., 2017. Investigation of Various Parameters Effect on Cerchar Abrasivity Index with PFC3D Modeling. Geotechnical and Geological Engineering, 35: 2747–2762.
Bieniawski, Z. T., 1975. The point load test in geotechnical practice. Engineering Geology, 11: 1-11.
Er, S., Tugrul, A., 2016. Correlation of physicomechanical properties of granitic rocks with Cerchar Abrasivity Index in Turkey. Measurement, 91: 114-123.
Ersoy, A., Waller, M. D., 1995. Textural characterization of rocks. Engineering Geology, 39: 123-136.
Garzón-Roca, J., Torrijo, F. J., Alonso-Pandavenes, O., Alija, S., 2020. Cerchar Abrasivity Index Estimation of Andesitic Rocks in Ecuador from Petrographical Properties using Artificial Neural Networks. International Journal of Geomechanics, 20(5): 04020036. https://doi.org/10.1061 /(ASCE)GM.1943-5622.0001632
Ghasemi, A., 2010. Study of Cherchar abrasivity index and potential modifications for more consistent measurement of rock abrasion. Master of Science, the Pennsylvania State University, United States.
Gharahbagh, E. A., Rostami, J., Ghasemi, A. R., Tonon, F., 2011. Review of rock abrasion testing. In: Proceeding of the 45th US Rock Mechanics/Geomechanics Symposium. San Francisco, California, June, 11-141.
Hamzaban, M. T., Memarian, H., Rostami, J., Ghasemi-Monfared, H., 2014. Study of rock-pin interaction in Cerchar abrasivity test. International Journal of Rock Mechanics and Mining sciences, 72: 100-108. https://doi.org/10.1016/J.IJRMMS.2014.09.007
Hassanpour, J., Rostami, J., Tarigh Azali, S., Zhao, J., 2014. Introduction of an empirical TBM cutter wear prediction model for pyroclastic and mafic igneous rocks; a case history of Karaj water conveyance tunnel Iran. Tunnelling and Underground Space Technology, 43: 222-231. https://doi.org/10.1016/j.tust.2014.05.007.
Hassanpour, J., Esmaeili Vardanjani S., Cheshomi, A., Rostami, J., 2019. Engineering geological studies used for redesigning and employing a hard rock TBM in soft rock formations of Chamshir water conveyance tunnel, Geopersia, 9 (1): 1-20, (in Persian), DOI:10.22059/geope.2018.253479.648374
Hecht-Nielsen, R., 1987. Kolmogorov’s mapping neural network existence theorem. First IEEE International Conference on Neural Networks. San Diego, 11-14.
Howarth, D. F., Rowlands, J. C., 1987. Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mechanics and Rock Engineering, 20: 57-85. https://doi.org/10.1007/BF01019511
ISRM, 2007. The Blue Book: The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring. 1974–2006. Compilation Arranged by the ISRM Turkish National Group, Ankara, Turkey.
Johnson, R., 1998. Elementary statistics, 5th edn. PWS - KENT Publishing Company. Boston.
Karrari, S. S., Heidari, M., Khademi Hamidi, J., Sharifi Teshnizi, E., 2023. Predicting geomechanical, abrasivity, and drillability properties in some igneous rocks using fabric features and petrographic indexes. Bulletin of Engineering Geology and the Environment, 82: 124. https://doi.org/10.1007/s10064-023-03144-0
Karrari, S. S., Heidari, M., Khademi Hamidi, J., Sharifi Teshnizi, E., 2024. New Cerchar Device Used for Evaluating Cerchar Abrasivity Parameters. International Journal of Geomechanics. 24(3), 04024005: 1-18. DOI: 10.1061/IJGNAI.GMENG-8676
Khaleghi Esfahani, M., Kamani, M., Ajalloeian, R., 2019. An investigation of the general relationships between abrasion resistance of aggregates and rock aggregate properties. Bulletin of Engineering Geology and the Environment, 78: 3959-3968. https://doi.org/10.1007/s10064-018-1366-7
Ko, T. Y., Kim, T. K., Son, Y., Jeon, S., 2016. Effect of geomechanical properties on Cerchar Abrasivity Index (CAI) and its application to TBM tunneling. Tunnelling and Underground Space Technology, 57: 99-111. http://dx.doi.org/10.1016/j.tust.2016.02.006
Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L., 2013. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Psychology, 49 (4): 764-766. DOI:10.1016/J.JESP.2013.03.013
Lin, L., Xia, Y., Zhang, X., 2020. Wear Characteristics of TBM Disc Cutter Ring Sliding against Different Types of Rock. KSCE Journal of Civil Engineering, 24: 3145-3155. https://doi.org/10.1007/s12205-020-2208-2
Majeed, Y., Abu Bakar, M. Z., 2015. Statistical evaluation of CERCHAR Abrasivity Index (CAI) measurement methods and dependence on petrographic and mechanical properties of selected rocks of Pakistan. Bulletin of Engineering Geology and the Environment, 75: 1341-1360. DOI 10.1007/s10064-015-0799-5
Majeed, Y., Abu Bakar, M. Z., 2018. A study to correlate LCPC rock abrasivity test results with petrographic and geomechanical rock properties. Quarterly Journal of Engineering Geology and Hydrogeology, 51: 365-378. https://doi.org/10.1144/qjegh2017-112
Massalov, T., Yagiz, S., Rostami, J., 2020. Relationship between Key Rock Properties and Cerchar Abrasivity Index for Estimation of Disc Cutter Wear Life in Rock Tunneling Applications. The ISRM International Symposium - EUROCK 2020, physical event not held, ISRM-EUROCK-2020-162.
McKenzie, J., 2011. Mean absolute percentage error and bias in economic forecasting. Economics Letters, 113 (3): 259-262. https://doi.org/10.1016/j.econlet.2011.08.010
Mishra, D. A., Srigyan, M., Basu, A., Rokade, P. J., 2015. Soft computing methods for estimating the uniaxial compressive strength of intact rock from index tests. International Journal of Rock Mechanics and Mining sciences, 80: 418-424. https://doi.org/10.1016/j.ijrmms.2015.10.012
Norusis, M., 2002. SPSS 11.0 Guide to data analysis. Prentice Hall Inc. Upper Saddle River.
Omar, M., 2016. Empirical correlations for predicting strength properties of rocks-United Arab Emirates. International Journal of Geo-Engineering, 11 (3): 248-261.
Ozturk, C. A., Nasuf, E., 2013. Strength classification of rock material based on textural properties. Tunnelling and Underground Space Technology, 37: 45-54.
Ozturk, C. A., Nasuf, E., Kahraman, E., 2014. Estimation of rock strength from quantitative assessment of rock texture. Journal of the Southern African Institute of Mining and Metallurgy, 14(6): 471-480.
Peng, J., Wong, N. Y., The, C. I., 2017. Influence of grain size heterogeneity on strength and micro- cracking behavior of crystalline rocks. Journal of Geophysical Research: Solid Earth, 122: 1054-1073.
Plinninger, R. J., 2002. Klassifizierung und Prognose von Werkzeugverschleiß bei konventionellen Gebirgslo ¨sungsverfahren im Statistical evaluation of CERCHAR Abrasivity Index’s (CAI’s) measurement methods and its…123 Festgestein.” Mu ¨nchner Geologische Hefte, Reihe B- Angewandte Geologie, 17: 147.
Plinninger, R. J., 2010. Hard rock abrasivity investigation using the Rock Abrasivity Index (RAI) Geologically Active. Taylor & Francis Group. London.
Prikryl, R., 2006. Assessment of rock geomechanical quality by quantitative rock fabric coefficients: limitations and possible source of misinterpretations. Engineering Geology, 87: 149-162.
Rostami, K., Khademi Hamidi, J., Nejati, H. R., 2020. Use of rock microscale properties for introducing a cuttability index in rock cutting with a chisel pick. Arabian Journal of Geosciences, 13: 960. https://doi.org/10.1007/s12517-020-05937-z
Roy, L. B., 2017. Properties of rocks and their applications (Rock mechanics). Civil Engineering Department NIT Patna. Patna-800005.
Schimazek, J., Knatz, H., 1970. the assessment of the cuttability of rocks by drag and roller bits. Ertz metal, 29: 113-119.
Shi, X., Tang, Y., Chen, S., Gao, L., Wang, Y., 2024. Experimental study on the sandstone abrasiveness via mineral composition and microstructure analysis. Petroleum, 10: 440-445.
Singh, T. N., Verma, A. K., 2012. Comparative analysis of intelligent algorithms to correlate strength and petrographic properties of some schistose rocks. Engineering with Computers, 28: 1-12.
Streckeisen, A., 1976. To each plutonic rock its proper name. Earth Science Reviews. International Magazine for Geo-Scientists, Amsterdam, 12: 1-33.
Teymen, A., 2020. The usability of Cerchar abrasivity index for the estimation of mechanical rock properties. International Journal of Rock Mechanics and Mining sciences, 128: 104258.
Ticknor, J. L., 2013. A Bayesian regularized artificial neural network for stock market forecasting Expert Systems with Applications, 40: 5501-5506.
Torrijo, F. J., Garzón-Roca, J., Company, J., Cobos, G., 2020. Estimation of Cerchar abrasivity index of andesitic rocks in Ecuador from chemical compounds and petrographical properties using regression analyses. Bulletin of Engineering Geology and the Environment, 78: 2331-2344.
Tumac, D., Copur, H., Balci, C., Er, S., Avunduk, E., 2017. Investigation into the Effects of Textural Properties on Cuttability Performance of a Chisel Tool. Rock Mechanics and Rock Engineering, 51: 1227-1248.
Undul, O., Er, S., 2017. Investigating the effects of micro-texture and geo-mechanical properties on the abrasiveness of volcanic rocks. Engineering Geology, 229: 85-94.
Verhoef, P. N. W., 1997. Wear of rock cutting tools (Implications for the site investigation of rock dredging projects). Balkema. 334.
West, G., 1981. A Review of Rock abrasiveness testing for tunneling. In Proceedings of international symposium on weak rock. Tokyo, Japan, 585-594.
West, G., 1989. Rock abrasiveness testing for tunneling. International journal of rock mechanics and mining sciences & Geomechanics abstracts, 26: 151-160.
Yarali, O., Yasar, E., Bacak, G., Ranjith, P. G., 2008. A study of rock abrasivity and tool wear in coal measures rocks. International Journal of Coal Geology, 74: 53-66.
Yarali, O., 2017. Investigation into Relationships between Cerchar Hardness Index and Some Mechanical Properties of Coal Measure Rocks. Geotechnical and Geological Engineering, 35: 1605-1614.
Yagiz, S., Frough, O., Rostami, J., 2020. Evaluation of rock brittleness indices to estimate Cerchar Abrasivity Index for disc cutter weariness. The 54th U.S. Rock Mechanics/Geomechanics Symposium. Physical event cancelled. June. ARMA-2020-1805