Abu Seif, E.S., 2013. Performance of cement mortar made with fine aggregates of dune sand, Kharga Oasis, Western Desert, Egypt: an experimental study. Jordan Journal of Civil Engineering, 7(3): 270-84.
Abu-Zeid, M.M., Baghdady, A.R., El-Etr, H.A., 2001. Textural attributes, mineralogy and provenance of sand dune fields in the greater Al Ain area, United Arab Emirates. Journal of Arid Environments,48(4): 475-499.
Al-Ansary, M., Pöppelreiter, M.C., Al-Jabry, A., Iyengar, S.R., 2012. Geological and physiochemicalcharacterisation of construction sands in Qatar. International Journal of Sustainable BuiltEnvironment, 1(1): 64-84.
Al-Sanad, H.A., Ismael, N.F., Nayfeh, A.J., 1993. Geotechnical properties of dune sands in Kuwait.Engineering Geology, 34(1-2): 45-52.
Al-Taie, A.J., Al-Shakarchi, Y.J., Mohammed, A.A., 2013. Investigation of geotechnical specifications of sand dune soil: a case study around Baiji in Iraq. IIUM Engineering Journal, 14(2).
Arias-Trujillo, J., Matías-Sanchez, A., Cantero, B.,López-Querol, S., 2020. Effect of polymer emulsionon the bearing capacity of aeolian sand under extreme confinement conditions. Construction and Building Materials, 236: 117473. ASTM D422-63, 2017. Standard test method for particle-size analysis of soils. West Conshohocken PA.
ASTM D7928-21e1, 2021. Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. West Conshohocken PA.
ASTM D4318-17e1, 2018. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken PA.
ASTM 854-14, 2014. Standard test methods for specific gravity of soil solids by water pycnometer. West Conshohocken PA. ASTM D698-12, 2021. Standard test methods for laboratory compaction characteristics of soil usingstandard effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). West Conshohocken PA.
ASTM D2166/D2166M-16, 2024. Standard test method for unconfined compressive strength of cohesive soil. West Conshohocken PA.
Asghari, E., Toll, D.G. Haeri, S.M., 2003. Triaxial behaviour of a cemented gravely sand, Tehran alluvium. Geotechnical and Geological Engineering, 21: 1-28.
Asgari, M.R., Baghebanzadeh Dezfuli, A., Bayat, M., 2015. Experimental study on stabilization of a low plasticity clayey soil with cement/lime. Arabian Journal of Geoscience, 8: 1439-1452.
Banu, S.A., Attom, M.F., 2023. Effect of curing time on lime-stabilized sandy soil against internal erosion. Geosciences, 13: 102.
Cheshomi, A., Mohammadi, F., Rajabi, A.M., 2020. Investigation of the effect of temperature on the undrained shear strength of kaolinite. Amirkabir Journal of Civil Engineering, 52(8): 1971-1982.
Cheshomi, A., Sahragard, A., 2023. Use of fine-grained soil for improvement of density and bearing capacity of aeolian sand. Geopersia, 13(2): 261-274.
Das, Braja M., 2016. Principle of Foundation Engineering. 8th Edition, Cengage Learning.896pp.
De Bruyn, D., Thymus, J.F., 1996. The influence of temperature on mechanical characteristics of Boom clay: The results of an initial laboratory programme. Engineering Geology, 41:117-123.
Elipe, M.G.M., L´opez-Querol, S., 2014. Aeolian sands: characterization, options of improvement and possible employment in construction - the state-of-the-art. Construction and Building Materials, 73(12): 728-739.
Espitia-Morales, A.F., Torres-Castellanos, N., 2022. Assessment of the compressive strength of lime mortars with admixtures subjected to two curing environments. Ingeniería e Investigación, 42(2): e91364. http://doi.org/10.15446/ing.investig.91364.
Fiskvik Bache, B.K., Wiersholm, P., Paniagua, P., Emdal, A., 2022. Effect of temperature on the strength of lime-cement stabilized Norwegian clays. Journal of Geotechnical and Geoenvironmental Engineering, 148(3) https://doi.org/10.1061/(ASCE)GT.1943-5606.0002699.
Graham, J., Alfaro, M., Ferris, G., 2004. Compression and strength of dense sand at high pressures and elevated temperatures. Canadian Geotechnical Journal, 41(6): 1206-1212.
Halliday, D., Resnick, R.,Walker, J., 2014. Fundamental of Physics. 10th Edition, Wiley and Sons, New York. 1456pp.
Hausmann, M.R (1990). Engineering Principles of Ground Modification. McGraw-Hill, 632 pp.
Heravi, M., Cheshmi, A., 2023. Investigation of the effect of polymer emulsion on the uniaxial compressive strength of aeolian sand. Civil Infrastructure Researches, 9(1): 175-191.
Heravi, M., Cheshmi, A., 2024. Investigation impact of polymer emulsion on shear strength of aeolian sand. Ferdowsi Civil Engineering, 37(1-45): 111-126
Jefferson, I., 1994. Temperature effects on clay soils. Ph.D. thesis, Loughborough University.
Kazemi, R., Davoodi, M.H., 2012. Investigation on the effect of curing time on uniaxial strength of clayey soils strengthened by saturated lime solution. World Applied Sciences Journal, 19(11): 1607-1612.
Karner, S.L., Chester, J.S., Chester, F.M., Kronenberg, A.K., Hajash, A., 2005. Laboratory deformation of granular quartz sand: Implications for the burial of clastic rocks. AAPG bulletin, 89(5): 603-625.
Khan, H., 1982. Soil studies for highway construction in arid zones. Engineering Geology, 19(1): 47-62.
Khelifa, H., Ghrici, M., Kenai, S., 2010. Effect of curing time on shear strength of cohesive soils stabilized with combination of lime and natural pozzolan. International Journal of Civil Engineering, 9(2): 90-96.
Laloui, L., 2001. Thermo-mechanical behavior of soils. Revue française de génie civil, 5(6): 809-843.
Liu, H., Liu, H., Xiao, Y., McCartney, J.S., 2018. Effects of temperature on the shear strength of saturated sand. Soils and Foundations, 58(6): 1326-1338.
Ma, Q., Shu, H., Xiao, H., Huang, C., 2020. Temperature-controlled triaxial compression test of tire strip-reinforced silty clay. Arabian Journal for Science and Engineering, 45: 4247-4256.
Moayed, R.Z., Izadi, E., Heidari, S., 2012. Stabilization of saline silty sand using lime and micro silica.Journal of Central South University, 19 (10): 3006-3011.
Mohammadi, F., Maghsoodi, S., Cheshomi, A., Rajabi, A.M., 2022. Unconfined compressive strength of clay soils at different temperatures: experimental and constitutive study. Environmental Earth Sciences, 81: 387. https://doi.org/10.1007/s12665-022-10473-y.
Mohamedzein, Y., Al-Hashmi, A., Al-Abri, A., Al-Shereiqi, A., 2019. Polymers for stabilisation of Wahiba dune sands, Oman. Proceedings of the Institution of Civil Engineers-Ground Improvement, 172(2): 76-84.
Neville, A.M., (2011). Properties of Concrete. Pearson Publications, Harlow. 846.pp.
Osinubi, K.J., 1998. Permeability of lime-treated lateritic soil. Journal of Transportation Engineering, 124(5): 465-469.
Padmakumar, G.P., Srinivas, K., Uday, K.V., Iyer, K.R., Pathak, P., Keshava, S.M., Singh, D.N., 2012. Characterization of aeolian sands from Indian desert. Engineering Geology, 139: 38-49.
Punya-in, Y., Kongkitkul, W., 2023. Effects of temperature on the stress-strain-time behavior of sand under shear. Journal of Testing and Evaluation, 51(2): 686-705.
Salih, N.B., Abdalla, T.A., 2023. Influence of curing temperature on shear strength and compressibility of swelling soil stabilized with hydrated lime. Journal of Engineering Research, 11(3): 2307-1877.
Schotsmans, E.M., Denton, J., Dekeirsschieter, J., Ivaneanu, T., Leentjes, S., Janaway, R.C., Wilson, A.S., 2012. Effects of hydrated lime and quicklime on the decay of buried human remains using pig cadavers as human body analogues. Forensic Science International, 217(1-3): 50-59.
Sherwood, P., 1993. Soil stabilization with cement and lime. HMSO, London. 153 pp.
Shiva Kumar, M., Selvaraj, T., 2023. Ancient organic lime plaster production technology and its properties among Mayan, Egyptian, Persian and Asian civilizations. Asian Journal of Civil Engineering, 24(5): 2709-2718.
Souza Júnior, P.L., Santos Junior, O.F., Fontoura, T.B., Freitas Neto, O. 2020. Drained and undrained behavior of an aeolian sand from Natal, Brazil. Soils and Rocks, 43(2): 263-270.
Tai, P., Wang, X., Zhang, L. and Chen, R., 2024. Thermal effects on the shear behaviour of saturated coarse-grained soils with reference to post-earthquake deposits. Acta Geophysica, 72(4): 2223-2230.
Wang, M., Benway, J.M., Arayssi, A.M., 1990. The effect of heating on engineering properties of clays. ASTM Special Technical Publication, 139-158.
Wang, S., Huang, Y., 2022. Experimental study on the shear characteristics of quartz sand exposed to high temperatures. Acta Geotechnica, 17: 5031-5041.
Zhang, Y., Daniels, J.L., Cetin, B., Baucom, I.K., 2020. Effect of temperature on pH, conductivity, and strength of lime-stabilized soil. Journal of Materials in Civil Engineering, 32(3). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003062
Yavari, N., Tang, A.M., Pereira, J.M., Hassen, G., 2016. Effect of temperature on the shear strength of soils and the soil-structure interface. Canadian Geotechnical Journal, 53(7): 1186-1194.
Yusof, Z., Zainorabidin, A., Osman Suliman, M.A., Omar Abu Osba, O.E., 2023. Effect of palm fiber- hydrated lime composition on the permeability of stabilised sandy soil. International Journal of Sustainable Construction Engineering and Technology, 14(2): 1-6.
Yu, H., Chen, W., Gong, Z., Ma, Y., Chen, G., Li, X., 2018. Influence of temperature on the hydro- mechanical behavior of Boom Clay. International Journal of Rock Mechanics and Mining Sciences, 108: 189-197.
Zhao, L., Tang, J., Zhou, M., Shen, K., 2022. A review of the coefficient of thermal expansion and thermal conductivity of graphite. New Carbon Materials, 37(3): 544-555