Altunkaynak, A., 2010. A predictive model for well loss using fuzzy logic approach. Hydrological processes, 24 (17): 2400-2404.
Chen, W., Panahi, M., Pourghasemi, H. R., 2017. Performance evaluation of gis-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (anfis) with genetic algorithm (ga),differential evolution (de), and particle swarm optimization (pso) for landslide spatial modelling.Catena, 157: 310-324.
Esbati, M., Ahmadieh Khanesar, M., Shahzadi, A., 2018. Modeling level change in lake urmia using hybrid artificial intelligence approaches. Theoretical and Applied Climatology, 133: 447-458.
Firat, M. and Gu¨ngo¨r, M., 2008. Hydrological time-series modelling using an adaptive neuro-fuzzy inference system. Hydrological Processes: An International Journal, 22(13): 2122-2132.
Fukuda, T., Shimojima, K., Arai, F., Matsuura, H., 1993. Multisensor integration system based on fuzzy inference and neural network. Information Sciences, 71(1-2): 27-41.
Goodarzi, M. and Eslamian, S. S., 2019. Evaluation of whaem and modflow models to determine the protection zone of drinking wells. Environmental Earth Sciences, 78(6):195.
Gupta, A. K., 2021. Fuzzy logic and their application in different areas of engineering science and research: A survey. International Journal of Scientific Research in Science and Technology, 8(2): 71-75.
Jafari, H., Moradi Nazarpoor, S., Niknam, M. S., Bagheri, R., Zarei Doudeji, S., 2023. Delineating capture zone of the production wells in abarkooh aquifer (central iran) using whaem model and statistical method of multivariate regression. Geopersia, 13(2): 357-363.
Keskin, M. E., Taylan, D., Terzi, O., 2006. Adaptive neural-based fuzzy inference system (anfis) approach for modelling hydrological time series. Hydrological sciences journal, 51 (4): 588-598.
Moradi Nazarpoor, S., Rezaei, M., and Mali, F., 2024. A new fuzzy method for investigating the effects of dam on aquifer: case study of rudbal dam, south of iran. Scientific Reports, 14(1):14503.
Nourani, V., Maleki, S., Najafi, H., Baghanam, A. H., 2024. A fuzzy logic-based approach for groundwater vulnerability assessment. Environmental Science and Pollution Research, 31(12):18010-18029.
Pham, Q. B., Mohammadi, B., Moazenzadeh, R., Heddam, S., Zola´, R. P., Sankaran, A., Gupta, V., Elkhrachy, I., Khedher, K. M., Anh, D. T., 2023. Prediction of lake water-level fluctuations using adaptive neuro-fuzzy inference system hybridized with metaheuristic optimization algorithms. Applied water science, 13(1):13.
Siarkos, I. and Latinopoulos, P., 2012. Delineation of wellhead protection zones for the control of point pollution sources in the aquifer of n. moudania, greece. Eur. Water, 40: 3-17.
Sugeno, M., 1985. An introductory survey of fuzzy control. Information sciences, 36 (1-2): 59-83.