-

نوع مقاله : مقاله پژوهشی

نویسنده

پژوهشکده علوم پایه کاربردی جهاد دانشگاهی، دانشگاه شهید بهشتی


Abraham, A., 2005. Adaptation of fuzzy inference system using neural learning. Fuzzy systems engineering, 914-914.##
Aminzadeh, F., Chatterjee, S., 1984. Applications of clustering in exploration seismology. Geoexploration, 23(1):147-159.##
Balasko, B., Abonyi, J., Feil, B., 2005. Fuzzy clustering and data analysis toolbox. Department of Process Engineering, University of Veszprem, Veszprem.##
Barnes, A.E., Laughlin, K.J., 2002. Investigation of methods for unsupervised classification of seismic data. In SEG Technical Program Expanded Abstracts 2002: 2221-2224.##
Barnes, A. E., 2007. Redundant and useless seismic attributes. Geophysics, 72(3): 33-38.##
Bezdek, J. C., 1980. A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms. IEEE transactions on pattern analysis and machine intelligence, 2(1): 1-8.##
Bezdek, J.C., 2013. Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media.##
Chen, M. S., 1999. A comparative study of learning methods in tuning parameters of fuzzy membership functions. In Systems, Man, and Cybernetics, 1999. IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on, (3): 40-44.##
Chopra, S., Marfurt, K.J., 2005. Seismic attributes—A historical perspective. Geophysics, 70: 3SO–28SO.##
Coléou, T., Poupon, M., Azbel, K., 2003. Unsupervised seismic facies classification: A review and comparison of techniques and implementation. The Leading Edge, 22(10): 942-953.##
de Matos, M.C., Osorio, P.L., Johann, P.R., 2006. Unsupervised seismic facies analysis using wavelet transform and self-organizing maps. Geophysics, 72: 9–21.##
dGB Earth Sciences B.V., 2013. Introduction to OpendTect V. 4.4 F3-Dutch Offshore.##
Dorrington, K.P., Link, C.A., 2004. Genetic-algorithm/neural-network approach to seismic attribute selection for well-log prediction. Geophysics, 69: 212–221.##
Dunn, J. C., 1973. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, Journal of Cybernetics, 3: 32-57##
Figueiredo, A. M., Silva, F. B., Silva, P. M., Milidiú, R. L., Gattass, M., 2014. A Seismic Facies Analysis Approach to Map 3D Seismic Horizons. In 2014 SEG Annual Meeting.##
Ghosh, A., Mishra, N. S., Ghosh, S., 2011. Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Information Sciences, 181(4): 699-715.##
Guillen, P., Larrazabal, G., González, G., Boumber, D., Vilalta, R., others, 2015. Supervised learning to detect salt body, in: 2015 SEG Annual Meeting.##
Gustafson, D.E., Kessel, W.C., 1979. January. Fuzzy clustering with a fuzzy covariance matrix. In Decision and Control including the 17th Symposium on Adaptive Processes, 1978 IEEE Conference on, 761-766.##
Hadiloo, S., Shahdani, H., 2016. Combining Supervised and Unsupervised Method with Expert Knowledge for Seismic Facies Analysis in SeisAnfis Software. In 78th EAGE Conference and Exhibition.##
Hadiloo, S., Hashemi, H., Mirzaei, S., Beiranvand, B., 2017. SeisART software: seismic facies analysis by contributing interpreter and computer. Arabian Journal of Geosciences, 10(23): 519.##
Hashemi, H., 2010. Logical considerations in applying pattern recognition techniques on seismic data: Precise ruling, realistic solutions. Cseg Recorder, 35(4): 47-50.##
Jang, J.S., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3): 665-685.##
Jang, J.S.R., Sun, C.T. Mizutani, E., 1997. Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]. IEEE Transactions on automatic control, 42(10): 1482-1484.##
Kim, E., Park, M., Ji, S. and Park, M., 1997. A new approach to fuzzy modeling. IEEE Transactions on fuzzy systems, 5(3): 328-337.##
Kuralkhanov, D., 2010. Study of Pattern Correlation Between Time Lapse Seismic Data and Saturation Changes (Doctoral dissertation, STANFORD UNIVERSITY).##
Kumar, M., Garg, D.P., 2004. Intelligent learning of fuzzy logic controllers via neural network and genetic algorithm. In Proceedings of, 1-8.##
Lesot, M.J. and Kruse, R., 2008. Gustafson-Kessel-like clustering algorithm based on typicality degrees. In Uncertainty and Intelligent Information Systems, 117-130.##
Marfurt, K.J., others, 2014. Seismic attributes and the road ahead, in: 84th SEG Meeting Expanded Abstracts.##
Marroquín, I.D., 2014. A knowledge-integration framework for interpreting seismic facies. Interpretation, 2: SA1–SA9.##
Nikravesh, M., Aminzadeh, F., 2001. Past, present and future intelligent reservoir characterization trends. Journal of Petroleum Science and Engineering, 31(2): 67-79.##
Orozco-del-Castillo, M.G., Ortiz-Alemán, C., Urrutia-Fucugauchi, J., Rodríguez-Castellanos, A., 2011. Fuzzy logic and image processing techniques for the interpretation of seismic data. Journal of Geophysics and Engineering, 8(2): 185.##
Overeem, I., Weltje, G. J., Bishop‐Kay, C., Kroonenberg, S. B., 2001. The Late Cenozoic Eridanos delta system in the Southern North Sea Basin: a climate signal in sediment supply? Basin Research, 13(3): 293-312.##
Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science, 290: 2323–2326.##
Roy, A., Jayaram, V., Marfurt, K.J., 2013. Active learning algorithms in seismic facies classification. In 2013 SEG Annual Meeting.##
Saggaf, M.M., Toksöz, M.N., Marhoon, M.I., 2003. Seismic facies classification and identification by competitive neural networks. Geophysics, 68: 1984–1999.##
Song, C., Liu, Z., Wang, Y., Li, X., Hu, G., 2017. Multi-waveform classification for seismic facies analysis. Computers & Geosciences, 101: 1-9.##
Sørensen, J. C., Gregersen, U., Breiner, M., Michelsen, O., 1997. High-frequency sequence stratigraphy of Upper Cenozoic deposits in the central and southeastern North Sea areas. Marine and Petroleum Geology, 14(2): 99-123.##
Takagi, T., Sugeno, M. 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE transactions on systems, man, and cybernetics, (1): 116-132.##
Tamhane, D., Wong P.M., Aminzadeh, F., 2002 Integrating linguistic descriptions and digital signals in petroleum reservoirs Int. J. Fuzzy Syst., 4: 586–91##
Thenin, D., Larson, R., 2013. Quantitative seismic interpretation—an earth modeling perspective. CSEG Recorder, 38: 30-35.##
Tsukamoto, Y., 1979. An approach to fuzzy reasoning method. Advances in fuzzy set theory and applications.##
Gupta, M.M., Ragade, R.K., Yager, R.R. eds., 1979. Advances in fuzzy set theory and applications. North-Holland Publishing Company.##
Wang, W., Zhang, Y., 2007. On fuzzy cluster validity indices. Fuzzy sets and systems, 158(19): 2095-2117.##
West, B.P., May, S.R., Eastwood, J.E., Rossen, C., 2002. Interactive seismic facies classification using textural attributes and neural networks. Lead. Edge, 21: 1042–1049.##
White, R.E., 1991. Properties of instantaneous seismic attributes. Lead. Edge, 10: 26–32.##
Yenugu, M., Marfurt, K.J., Matson, S., 2010. Seismic texture analysis for reservoir prediction and characterization. Lead. Edge, 29: 1116–1121.##
Zhao, T., Jayaram, V., Roy, R., Marfurt, K.J., 2015. A comparison of classification techniques for seismic facies recognition: Interpretation, 3: 29-58.##
Zhao, T., Ramachandran, K., 2013. Performance evaluation of complex neural networks in reservoir characterization: Applied to Boonsville 3-D seismic data. In 2013 SEG Annual Meeting.##