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Abstract 
The analytical modeling solutions and Taylor's expansion have been applied to various groundwater 
equations. This study explores the effectiveness of Taylor's expansion in simplifying the capture zone 
(CZ) equations for a multi-horizontal well (HW) system. The examined well system encompasses a 
combination of arbitrarily located production and recharge HWs, each with varying discharge or 
recharge rates and directions of uniform flow. To validate the utility of Taylor's expansion in this 
context, the velocity potential values from the equations were calculated both before and after applying 
the expansion. To further confirm the precision of the results, equipotential and flow lines were 
generated for both the original and simplified equations. The analysis revealed significant findings 
regarding accuracy: the percentage differences in hydraulic head between the original equations and 
those derived from Taylor's expansion reached peaks of 59.07% and 68.51% for aquifer thicknesses 
ranging from 0 to 50 meters. Remarkably, as the aquifer thickness increased, these percentage 
differences decreased substantially, achieving minimum values at a thickness of 1500 meters. Overall, 
the application of Taylor's expansion proves to be highly effective for aquifer thicknesses approximately 
200 meters or greater in terms of hydraulic head and around 400 meters or more concerning the 
corresponding equations. The drawing of equipotential and flow lines reinforces the validity of these 
findings and demonstrates the practical applicability of the simplified equations. Furthermore, the 
established thresholds of thicknesses for accurate application provide critical guidance for future 
hydrological analyses. Future research could expand on these findings by exploring its applications 
under diverse geological conditions. 
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Introduction 
 
One of the ways to extract groundwater is to use horizontal wells (HWs), which provide a more 
useful surface for water exit due to having a long screen length compared to vertical wells 
(Sawyer & Lieuallen Dulam, 1998). The capture zone (CZ) of a HW is the area around the HW 
that supplies it with water (Barry et al., 2008). The equations related to the CZ around the HW 
for a multi-HW system have been previously obtained (Talebizadeh, 2024). In this paper, these 
equations can be simplified by using Taylor's expansion. 
    Taylor's series, named after a mathematician named Brooke Taylor, is a power series 
expansion of a function at a certain point. The derivatives evaluated at that point are used to 
construct this function, and each derivative adds a term to the series (Hammad, 2023). Taylor's 
series can estimate the value of a function at a nearby point, especially for evaluating functions 
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whose derivatives are difficult to calculate (Schneider et al., 2018). For example, the sine and 
cosine functions can be expressed as Taylor's series, which allows them to be evaluated with 
arbitrary precision. Because of its convergence property, complex functions can be replaced 
with simpler polynomial functions. The advantage of this method is its high accuracy in 
approximating functions, which makes analysis and calculations easier. Another advantage of 
this method is its significant application in all areas of calculus, which can accurately convert 
nonlinear issues into linear problems (Wu et al., 2024). One practical application of this method 
is numerical simulations, in which Taylor expansion is used to determine the function's value 
at different points and reduce the complexity of the calculations. Another application of this 
method is to determine the limit, a function’s extreme value, the value of the higher derivative 
at a certain point, the convergence of generalized integrals, an approximation, the proof of 
inequalities, and more (Weidun et al., 2005).  
    Many studies have been done on the use of Taylor's expansion. For example, a Taylor method 
for solving Fredholm integral equations was presented by Kanwall & Liu (1989), and then this 
method was generalized by Sezer (1994) for Volterra integral equations. Kesan (2003) has used 
Taylor's matrix method for the approximate solution of linear differential equations. Berna & 
Sezer (2010), used a Taylor polynomial approximation to solve hyperbolic partial differential 
equations with constant coefficients and gave several numerical examples to demonstrate the 
efficiency and reliability of the method. The solution of stochastic partial differential equations 
is also presented by Taylor's expansion (Jentzen, 2018). The propagation of uncertainty on a 
nonlinear measurement model is presented by Gu et al. (2021) using a higher-order Taylor's 
series. Taylor's expansion has also been used in groundwater problems. Marquardt (1963) 
introduced Taylor's expansion as one of the linearization methods of nonlinear equations in 
groundwater models. Michael et al. (1981) applied the first and second-order uncertainty 
analysis to the numerical groundwater flow models, which used Taylor's expansion for this 
issue and obtained the model equations. The results showed that these equations can estimate 
the mean and variance-covariance properties of piezometric head predictions, given 
corresponding statistics for aquifer parameters: material properties, initial conditions, boundary 
conditions, and inputs. Zhan (1999a) obtained an analytical solution of the Capture time for a 
particle moving from its initial location to a HW. Then, for comparison, he obtained the Capture 
time for a vertical well in an aquifer with the same characteristics as a HW, which he applied 
Taylor's expansion to his equation to simplify  this problem. It should be noted that the aquifer 
thickness is considered infinite, which makes the effect of boundaries on the pumping well 
negligible, and the results showed that under such conditions, the performance of horizontal 
and vertical wells is similar. Grid refinement scheme in numerical groundwater flow models by 
increasing the accuracy of the solution without causing problems for run time of the model has 
been introduced by Mansour & Spink (2013), which is based on the theory of divergence and 
Taylor's expansion. The results showed that the use of more terms of Taylor's expansion 
improves the numerical solution and produces acceptable degrees of accuracy. Suk & Park 
(2019) have introduced a new numerical method for the accurate and efficient calculation of 
the Richards equation to simulate variably saturated flow in heterogeneous layered porous 
media. In the proposed method, the Kirchhoff integral transformation was applied. To avoid 
the dyadic characteristics at the material interface, a truncated Taylor series expansion was 
applied to the Kirchhoff head at the material interface. Accordingly, through the Taylor series 
expansion, a set of algebraic equations in the one-dimensional control volume finite difference 
discretized system formed a tridiagonal matrix system. The results clearly demonstrated that 
the approach was not only more computationally efficient but also more accurate and robust 
than other numerical methods.  
    The purpose of this research is to use Taylor's expansion to simplify equations for a multi-
HWs system and to check its accuracy and sensitivity. The aquifer is considered confined and 
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has a boundary on the left side that can be either in-flow or no-flow. Taylor's expansion makes 
the equations easy to use for any user. To demonstrate the validity of using Taylor's expansion 
the   values for the equations obtained before and after using Taylor's expansion were 
calculated for three different positions of the HW, in four different positions of the plane, and 
for three different flow rates, and the results are compared. In the following, to confirm the 
correctness of the obtained equations, the equipotential and flow lines were drawn before and 
after simplification with Taylor’s expansion and compared with each other. 
 
Conceptual model 
 
A schematic image of the confined aquifer with a boundary on the left side can be seen in Figure 
1.  This boundary can be in-flow (Figure 1(i)) or no-flow (Figure 1(ii)). The right side of the 
aquifer has an infinite boundary. Talebizadeh (2024) tried to solve this problem, using the 
theory of image wells and found the below equations (Equations 1, 2 and 3): 
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1 tanh( (( ) 2)D D DgP z b  , 2 tan( (( ) 2)D D DgP x a  , 3 tan( (( ) 2)D D DgP x b  ,

4 tanh( (( ) 2)D D DgP z b   

 
    And boundary configuration in Figure 1(ii) as follows (Equations 4, 5, 6 and 7): 
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(Equation 6) 
 
    Taylor's series is a power series expansion of a function at a certain point. The Taylor's series 
around a particular point is given as follows (Hammad, 2023): 
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where nf is the nth derivative of f evaluated at the point c, c is the real or complex number, n 
is the summation number and s is a variable. 
 
Governing mathematical equations 
 
Taylor's series is a power series expansion of a function in a certain point that is used in various 
groundwater problems. Talebizadeh, 2024 has derived the analytical solution of the CZ 
equations for boundary configuration shown in Figures 1(i) and 1(ii). These solutions are long 
and may be difficult to use for any users. In this research, we use Taylor's expansion to simplify 
them so that will be applicable and understandable for any users without complicated 
mathematics (Zhan, 1999a). For this purpose, the following Taylor’s expansion is considered 
(Equation 8) (Taylor, 1976):  
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If we considered x in Equation 1 as G1D, G2D, G3D, and G4D, according to Equation 8, can be 
replaced as sin (G1D), sin (G2D), sin (G3D), and sin (G4D) in Equation 1, therefore (Equation 9): 
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To simplify Equation 2 by using Taylor's expansion, first, the ln in the equation is expanded 
and the values M1D to M4D are replaced. Which results in (Equation 10): 
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(Equation 10) 

If ( )D Dgz b  , ( )D Dgx a  , ( )D Dgx a   and ( )D Dgz b   are considered as x in this Equation 

(10) and according to Equation 8, substituting cosh( )x  and cos( )x  gives the following Equation 
(11): 
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Figure 1. Schematic cross-section of confined aquifer boundary configurations. (i) bounded in left by 
constant head inflow boundary, (ii) bounded in left by no-flow boundary. The right boundary has an 
infinite extent. The well is horizontal at location (a, b). The aquifer thickness is L, and the origin of the 
x-z axis is on the lower left part of the aquifer  
 
   In Equation 11, the term inside ln is written in a simpler form by taking the common 
denominator, and finally, ln can also be written as follows (Equation 12): 
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    To simplify Equation 3, based on Equation 8, tanh( )x  and tan( )x  are considered equal to x, 

where x is (( ) 2D Dgz b  , (( ) 2D Dgx a  , (( ) 2D Dgx b   and (( ) 2D Dgz b   in Equation 

3. According to these cases, Equation 3 can be expressed as follows (Equation 13): 
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    This equation can be simplified as follows (Equation 14): 
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    Similarly, Equations 4 to 6, which are related to the boundary configuration in Figure 1(ii), 
can be simplified using Taylor's expansion respectively as (Equations 15, 16 and 17): 
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(Equations 17)      
    Therefore, Equations 15 to 17 are the simplified form of Equations 4 to 6 using Taylor's 
expansion. It should be noted that due to the similarity of the calculation process, details have 
been avoided.                
 
Results and discussion 
 
In this section, the accuracy of Taylor's expansion is investigated. Due to the large number of 
points, only several HWs with several different flow rates at different positions in the plane are 
considered and the results are presented in the form of a graph. 
 
Taylor's expansion accuracy 
 
Simplifying equations using Taylor's expansion may introduce errors in some conditions. In the 
following, the difference percentage of the calculated equations (Equations 1 to 6) 
(Talebizadeh, 2024) and the simplified equation with Taylor's expansion (Equations 9, 12, 14, 
15, 16, and 17) have been investigated; For example, Equation 2 is compared with its equivalent 
obtained from Taylor's expansion; i.e. Equation 12.  For this purpose, three HW’s in different 
locations, i.e. (a = 20, b = 60), (a = 70, b = 45) and (a = 50, b = 30) are considered. For each 
HW, the values of   at four positions on the plane (x, z = 20, x, z = 50, x, z = 70, and x, z = 
100) and three different flow rates (Q = 345.6 m/day, Q = 502.6 m/day and Q = 864 m/day) 
were calculated before and after using the Taylor expansion (Equations 2 and 3, respectively). 
The thickness used for the aquifer in these calculations ranges from L = 30m to L = 2300m. It 

should be noted that these calculations were performed for both 90    and 270   . After 
calculating , hydraulic head values (h) were obtained with the equation of Kh   and the 

head became dimensionless by using D
h

h
L

  (Bear, 1972). Then, the difference percentage of 

Dh calculated using Equations 2 and 12 was obtained and the graph of aquifer thickness (L) 

changes against this difference percentage was drawn separately for 90   and 270  

(Figures 2 and 3). Table 1 shows the brief of Figures 2 and 3 data (the average difference 
percentage calculated from Equations 2 and 12 for different thicknesses). As seen in Figures 2 
and 3 and in Table 1, for both values of α, the average percentage difference Dh in Equations 2 

and 12 is highest in thicknesses from 0 to 50 m, which is %59.07 and %68.51 for 90   and

270   , respectively. These results show that when the aquifer thickness is less than 50m, 
Taylor's expansion is not very accurate. As the thickness increases (Table 1), this difference 
percentage decreases significantly, reaching its lowest value after the thickness of 1500 m and 
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reaches at its lowest values, i.e., %0.008 for 90   and %0.009 for 270   . Based on the 

Table 1, from a thickness of about 200 m for 90   and 400 m for 270   , the simplified 
Taylor’s expansion equation can be used with high accuracy instead of the equation calculated 
by Talebizadeh (2024). These figures also demonstrate that users with a specified aquifer 
thickness could observe the different percentage of Dh and the validity of Taylor’s expansion. 
 
Capture zone of one arbitrarily located HW near one boundary 
 
In this section, the equations of D and D representing the net flow in the x-z plane, in two 

cases before and after simplification with Taylor's expansion, for one HW (Figures 4(A) and 
(B)) and three HWs (Figures 5(A) and (B)) are drawn and compared against each other for the 
boundary configuration shown in Figure 1(i).  
 

Table 1. Difference percentage hD Eq.2 and hD Eq. 12 for α = 90⁰ and 270⁰ 

L (m) 
% Difference hD Eq.2 and hD Eq. 12α 

= 90⁰ 
% Difference hD Eq.2 and hD Eq. 12 

α = 270⁰ 

0 - 50 59.06 68.51 

50 - 100 35.70 58.26 

100 - 200 9.52 37.75 

200 - 300 2.85 13.20 

300 - 700 0.38 0.88 

700 - 1500 0.05 0.08 

1500 - 2300 0.008 0.009 

 

 
Figure 2. The graph of the difference percentage of hD calculated by using Eq. 2 and Eq. 12 against the 
changes in aquifer thickness (L) for 90   , three different positions of the HW, i.e. (a = 20, b = 60), 
(a = 70, b = 45) and (a = 50, b = 30), in four different  location of the plane (x, z = 20, x, z = 50, x, z = 
70 and x, z = 100) and for three different HW flow rates (Q = 345.6 m/day, Q = 502.6 m/day and Q = 
864 m/day) 
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Figure 3. The graph of the percentage difference of hD calculated by using Eq. 3 and Eq. 12 against the 

changes of L for 270   , three different positions of the HW, i.e. (a = 20, b = 60), (a = 70, b = 45) and 
(a = 50, b = 30), in four different  location of the plane (x, z = 20, x, z = 50, x, z = 70 and x, z = 100) 
and for three different HW flow rates (Q = 345.6 m/day, Q = 502.6 m/day and Q = 864 m/day) 
 

Figure 4.  Velocity potential (dashed line) and stream function (solid line) of a HW: (A) before 
simplifying the equations with Taylor's expansion, (B) after simplifying the equations with Taylor's 
expansion. The solid circle is the extraction HW  
 

    Parameters D  and D , show equipotential and streamlines, respectively. The flow lines 

converged toward the HW, which indicates the CZ (Zarei-Dodeji & Samani, 2016). Equations 
12 and 13 were used to draw Figures 4 and 5(A) and Figures 4 and 5(B) have been drawn using 
Equations 23 and 26. In these Figures, the thickness of the aquifer is considered to be 250 m 
and the direction of uniform flow is from left to the right ( 90 )   . In the Figures 4(A) and 
(B) the position of the HW is at 50( )a m , 30( )b m , and its extraction rate is 4 lit/s. In 

Figures 5 (A) and (B) the position of HW is 1 1 2 230( ), 65( ), 60( ), 65( )a m b m a m b m    and 

3 340( ), 20( )a m b m   and 1 2 5 /Q Q lit s  and 3 5 /Q lit s  .  
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Figure 5. Velocity potential (dashed line) and stream function (solid line) of three HWs: (A) before 
simplifying the equations with Taylor's expansion, (B) after simplifying the equations with Taylor's 
expansion. The solid circle is the extraction HW and the hollow circle is the injection HW 
 
    As illustrated in these figures, it is clear that the HW takes its water from the left inflow 
boundary. As can be seen, the streamlines are parallel to the no-flow boundaries and come 
toward the HW, which is expected in this context. Also, it can be seen that Figures 4(A) and 
(B) and Figures 5(A) and (B) are similar. Based on this, from the thickness of about 200 m, the 
simplified Taylor’s expansion equation can be used with high accuracy instead of the equation 
calculated in this research. 
 
Conclusion 
 
In this research, Taylor's expansion is used as a method to simplify CZ equations for a multi-
HWs system obtained by Talebizadeh (2024) and the results were compared. The results show 
that for both values of α, the average difference percentage of Dh is the highest in thicknesses 

from 0 to 50 m, which is %59.07 and %68.51 for 90   and 270   , respectively. As the 
thickness increases, this difference percentage decreases significantly, so that after the thickness 

of about 1500 m, it reaches its lowest value, i.e., %0.008 for 90   and %0.009 for 270  

. Based on this, from a thickness of about 200 m for 90   and from a thickness of about 400 
m for 270   the simplified Taylor’s expansion equation can be used with high accuracy 
instead of the equation calculated by Talebizadeh (2024). Drawing the equations also confirmed 
this issue. This research highlights the effective application of Taylor's expansion for simplifying 
the equations that describe the capture zone (CZ) of horizontal wells (HWs) in multi-HW systems. 
The simplification process results in user-friendly equations that facilitate practical applications 
in groundwater management without requiring extensive mathematical expertise. The accuracy 
assessment indicates that the Taylor expansion provides reliable approximations for aquifer 
thicknesses of around 200m and greater, with minimal percentage differences compared to 
traditional equations. However, it is crucial to note that for thicknesses under 50 m, the approach 
introduces significant errors, emphasizing the need for caution in its application under such 
conditions. Through graphical analysis of equipotential lines and streamlines, the study confirms 
that the simplified equations maintain the integrity of flow dynamics and capture zone 
characteristics. This reinforces the potential of Taylor's expansion as a valuable tool for 
hydrologists and water resource managers, enabling more efficient modeling of groundwater 
behaviors. The findings advocate for the integration of Taylor's expansion into groundwater flow 
modeling practices, enhancing both computational efficiency and accuracy. Future investigations 
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should aim to evaluate the method's applicability across varying geological and hydrological 
contexts, thereby broadening its utility in diverse groundwater management scenarios. 
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