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Abstract 
This study focuses on the facies modeling and reservoir characterization of the Permian-Triassic age 
Dalan and Kangan formations, defined as the main reservoirs in the Persian Gulf's South Pars Gas Field. 
Based on the main characteristics of petrographical observations, 12 facies were identified and classified 
into four facies associations representing tidal flat (LFAs 1), lagoon (LFAs 2), shoal (LFAs 3), and open 
marine (LFAs 4) conditions on a carbonate ramp. A neural network approach (self-organizing maps) 
was employed to predict lithofacies and lithofacies associations (LFAs) in uncored wells. The method 
demonstrated a high level of accuracy, achieving an 87.5% success rate in predicting lithofacies using 
GR, DT, NPHI, RHOB, and PEF logs. The predicted LFAs were compared with the core-derived facies 
and rock types to generate a 2D facies model within the sequence stratigraphy framework for geologic 
modeling and subsequent reservoir simulation. Finally, geostatistical techniques were employed to 
prepare a 3D facies distribution and depositional model for the entire field. The stochastic simulation 
method was applied here to simulate and generate the 3D model of four major LFAs involved in the 
modeling. Facies modeling of the formations indicates a gentle shallowing from zone K4 to zone K3. 
The connectivity of LFAs 3 is well observed in zone K4, whereas in zone K3 the connectivity of LFAs 
2 is evident. Zone K2 is associated with dominant LFAs 3 and minor LFAs 4. The zone K1 is 
characterized by the dominance of LFAs 1.  
 
Keywords: Lithofacies, Log facies, Reservoir simulation, Carbonate reservoir, South Pars Gas Field, 
Persian Gulf. 
 
Introduction 
 
Opening of the NW-SE trending Neo Tethys Ocean followed by regional movement of the 
Qatar Arch resulted in the development of a wide carbonate ramp in the north margin of the 
Arabian Plate, in which deposition of shallow marine carbonates of Kangan and Dalan 
formations took place during Permian to the Triassic period in Iran (or Khuff Formation in the 
Arabian plate) (Ghazban, 2007; Kalhor et al., 2024). These formations are the main reservoirs 
of the giant South Pars Gas Field (SPGF) (Fig.1).  
    The carbonate facies of the Kangan and upper Dalan formations in the studied area are 
classified into 4 reservoir units, known as K1, K2, K3 and K4 (from top to base) (e.g., 
Alsharhan, 1993; Sharland et al., 2001; Insalaco et al, 2006; Ehrenberg et al, 2007; Rahimpour-
Bonab et al, 2009, Sfidari et al, 2012; Shahkaram et al, 2022; Moradi et al. 2024). The total 
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thickness of the formations exceeds 450 m in the NE of the SPGF, decreasing to 380 m 
southward. The K4 reservoir unit, the deepest zone with ~160m thickness, is composed of 
limestone and dolostone and is characterized by high porosity values (up to 15%), and the 
highest hydrocarbon productivity (Rahimpour-Bonab et al, 2009). The K3 reservoir unit, with 
a gross thickness of 120 m, is dominated by dolostones with interlayers of anhydrite. Its lower 
part is recognizable by thick anhydrite and anhydritic carbonate (up to 50 m) which acts as a 
hydrocarbon barrier and separates this unit from the K4 (Shahkaram et al. 2022). This barrier 
interval is equivalent to the dense Upper Anhydrite unit (UA) in the North Field (Esrafili-Dezaji 
& Rahimpour-bonab, 2009). The K2 reservoir unit consists of ~ 42m productive limestone with 
a wide range of porosity and permeability values. The base of this unit is defined by a thick 
thrombolytic facies, which serves as a marker for the Permian-Triassic boundary in the area. 
This boundary is regarded as an important unconformity representing a significant time missing 
(Fakhar et al. 2022). The K1 reservoir unit is made up of ~ 100m dolostone with some anhydrite 
and carbonate intervals at its base. This unit is overlain by the Dashtak Formation (the cap rack 
of the field). 
    From a reservoir quality point of view, the K4 and K2 units have good reservoir quality, 
while the other two are less important. Reservoir quality and the thickness of the formations 
decrease from NW to SE (Fig. 2). Despite the numerous studies on the Kangan and Dalan 
formations in the area, their original geologic framework model, lithofacies distribution and 
internal facies/facies association geometry are not understood yet.  
This study focuses on these aspects and their application in reservoir modeling of the SPGF. 
The primary goals involve reservoir modeling of the formations and mapping the distribution 
of facies associations across the entire field. Due to the limitation of the available cores for the 
facies/facies association analysis, an integrated (petrography and geostatistical) approach, using 
a Self Organizing Map (SOM) neural network is planned to construct an improved reservoir 
model of the studied succession. The facies and facies associations of the formations have been 
identified based on the cores from three cored wells. The neural network extends the results 
obtained from core descriptions to wells with wireline log data. Geo-statistical techniques 
accomplish modeling of facies and facies associations. Distribution of facies and facies 
associations are shown throughout the field using distinct codes for each (Qi et al 2007, 
Iloghalu, E., 2003; Koehrer et al 2010; Lopez et al., 2024). 
 

 
Figure 1. Location map of the SPGS in the Persian Gulf (right) and its general stratigraphy (left) 
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Figure 2. Isopach map of the studied formations in the South Pars Gas Field 

 
Material and Methods 
 
This study focuses exclusively on the geological facies modeling (facies defined from cores, 
cuttings, and logs) of the studied formations to address the modeling and simulation of the best 
reservoir interval(s). The research incorporates cores from three key wells containing standard 
thin sections and core-measured porosity and permeability values. Wireline logs, reservoir tops, 
and the UGC map of the reservoir horizons were available for this study. Petrographic analysis 
of 1800 thin sections from a 1000 m core was a base of facies and facies association 
determination.  
    In the cored wells, the facies were determined based on texture, size, type of the allochems 
(ooids, peloids, shell fragments, etc.), matrix and cement types, and diagnostic sedimentary 
features. Substantial diagenetic features and their effects on porosity evolution are also 
considered. Compared with the standard microfacies (Flugel, 2010), the facies with similar 
characteristics are grouped as facies associations (FAs) and linked to specific depositional 
environments (c.f. Wilson, 1975; Flugel, 2010). These facies were used as a base for predicting 
lithofacies  (logfacies of Serra, 1986) in the uncored wells through the Neural Network 
approach (Sfidari et al., 2012; Qi et al., 2007). The predicted lithofacies were cross-validated 
with the core-determined facies using the Neural Network approach and then employed for 
facies modeling through the Geostatistical method (Fig. 3). 
    In the uncored wells, a suite of well logs - gamma ray (GR), acoustic transmit-time (DT), 
neutron (NPHI), density (RHOB), and photoelectric log (PEF) - were selected for logfacies 
analysis. Therefore, the facies in the uncored wells were predicted based on their characteristics 
in these logs, while correlating with facies defined from the cores. The predicted lithofacies 
with similar characters were also grouped in lithofacies associations (LFAs). During the 
correlation of predicted lithofacies and LFAs with the core-defined facies and FAs, depth 
matching was performed to ensure accurate alignment of well log data with the corresponding 
fine-scale core data.  
 
Facies analysis, Litho-facies Prediction, and Depositional Model 
 
A combination of core description and petrographic studies identified 12 facies, with their major 
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characteristics shown in Table 1. Results from all previous studies on the facies analysis of these 
formations (e.g., Insalaco et al., 2006; Ehremberg, 2007; Rahimpour-Bonab et al., 2009; Esrafili-
Dizaji & Rahimpour-Bonab, 2009; Rahimpour-Bonab et al., 2010; Tavakoli et al., 2011; Tavakoli 
& Rahimpour-Bonab, 2012; Moradi et al., 2024) were also considered to achieve a more 
comprehensive and practical classification of the facies.   
 
Table 1. Major facies of the studied formations, their sedimentological composition, and depositional 
environment 

Facies 
number 

Facies name 
Depositional 
environment 

Lithology Texture Allochem 
Energy 

level 
SMF 
Equal 

CF-1 
Anhydritic 
mudstone 

Supra tidal Anhydrite Mudstone No Allochem Low RMF 25 

CF-2 
Stromatolite 
Boundstone 

Intertidal carbonate Boundstone 
Microbial 
Organism 

Low RMF 20 

CF-3 
Pelloidal 

Grainstone 
Intertidal 
lagoon 

carbonate Grainstone Pelloid, Ooid Medium RMF 20 

CF-4 
Muddy 

Anhydrite 
Lagoon 

Carbonate, 
Anhydrite 

Wackstone, 
Packstone 

Gastropode, 
Pelloid 

Low RMF 22 

CF-5 
Bioclast 

Wackeston 
To Packstone 

Lagoon 
Carbonate/ 
Dolomite 

Wackstone,
Mudstone 

Green Algae, 
Benthic 

Foraminifer 
Low RMF 22 

CF-6 
Fossiliferous 

Lime 
Mudstone 

Lagoon 
Carbonate/ 
Dolomite 

Mudstone 
Milliolid, 

Gastropode 
Low RMF 18 

CF-7 
Ooid 

Grainstone 
Shoal 

Carbonate/ 
Dolomite 

Grainstone Ooid, Bioclast Medium RMF 15 

CF-8 
Bioclast 

Grainstone 
Shoal , 

Lee ward 
 Grainstone Bioclast, Pelloid High RMF 17 

CF-9 
Bioclast 

Grainstone 
Shoal, 

Sea ward 
carbonate Grainstone Bioclast, Pelloid High RMF 12 

CF-10 
Intraclast 

Grainstone 
Shoal Limestone Grainstone Ooid, Intraclast High RMF 15 

CF-11 Dolostone Shoal Dolomite Grainstone 
Bioclast Pelloid 

Intraclast 
High RMF 13 

CF 12 
Bioclast 

Wackstone 
Open Marine carbonate Wackstone 

Brachiopode, 
Bioclast 

Medium - 

 

 
Figure 3. Flowchart illustrating the major steps used in modeling and simulation of the geological facie 
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    Facies analysis in the uncored wells was carried out by lithofacies prediction from wireline 
logs. Application of computational (artificial) intelligence and pattern recognition to predict 
lithofacies from wireline logs is well-documented in numerous publications (e.g., Derek et al., 
1990; Wong et al., 1995; Saggaf & Nebrija, 2003; Iloghalu, 2003; Qi et al., 2006; Dubois et al., 
2007; Al-Anazi & Gates, 2010; Dashti et al., 2016; Maahs et al., 2024; Norsahminan et al., 
2024). Transforming lithofacies from logfacies or predicting from wireline logs is a key element 
in field-scale studies (Qi et al., 2006; Maahs et al., 2024; Norsahminan et al., 2024). The 
transformation is very challenging due to the non-linear relationship between the fine-scale 
described lithofacies and the coarse-scale wireline log data. A crucial aspect of this approach is 
that the wireline logs are used as input data, with each lithofacies serving as a separate target 
input into the ANN.  
    The electrofacies/logfacies analysis of the formations in the studied area is well documented 
in Sfidari et al., 2012a, 2012b. The initial results of extracted lithofacies from the determined 
logfacies were unreliable due to the discrepancies in calibration from logfacies to lithofacies in 
mud support intervals. To address this, a successful single-layer neural network (NN) with a 
backpropagation algorithm was used to predict lithofacies classes from normalized digital well 
logs. This approach (model) was trained, validated, and tested in the three key wells by 
correlating the predicted lithofacies with facies determined from the cores (Fig. 4). 
 

 
Figure 4. Prediction of litho-facies associations by the Neural Network model in two key wells of the 
SPGF 
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    The model, fine-tuned with parameters from crass validation and testing (network size and 
damping parameter), was subsequently used for lithofacies prediction in the uncored wells. 
Similarly, the model was applied to predict the lithofacies associations (LFAs) in the uncored 
wells of the field. Results displayed a good performance and a reliable prediction of the Neural 
Network classification (Table 2). 
    The depositional environments of the facies were determined based on their sedimentological 
characteristics (Table 1), their vertical and lateral extents, their comparison to the standard 
microfacies (Flugel, 2010), and those reported from equivalent formations in the area (e.g., Al-
Aswad, 1997; Angiolini et al., 2003; Alsharhan & Kendall, 2003; Khalifa, 2005; Alsharhan, 
2006). Based on their main characteristics, the facies are classified into four facies associations 
- tidal flat, lagoon, shoal, and open marine - on a carbonate ramp (Fig. 4). Depositional 
environments of the formations in the uncored wells were discussed through correlation of the 
predicted lithofacies and LFAs with the facies associations defined on the cores (table 3). The 
lateral distribution of facies associations and their counterparts (LFAs) across the field indicates 
a wide carbonate ramp along the south margin of the Neo Tethys. The absence/scarcity of reef 
deposits and the low diversity of facies types confirm this indication (Ahr, 1973; Burchette & 
Wright, 1992; Avrell et al., 1998). Similar conditions have been reported for equivalent deposits 
(Khuff Formation) in neighboring areas (Al-Aswad, 1997; Alsharhan, 2006). 
    The Lime mudstones with anhydrite patches (facies 1) and stromatolite boundstones with 
wackestone to packstones (facies 2) characterize the lower sabkha to high energy parts of the 
lower tidal flat. Restricted and harsh conditions in the tidal flat most likely led to increased 
salinity and sporadic development of evaporites (facies 1). 
 
Table 2. The prediction effectiveness of the Neural Network classification model for Kangan and Dalan 
formations of the SPGF, SW Iran (Neural network size: 20; damping parameter: 0.01; iteration number: 
500) 

Confusion 
matrix 

predicted litho-facies 
Absolute 
accuracy 

1 2 3 4 
Grand 
Total 

Actual 
facies 

1 212 13 45 4 274 77.372 
2 7 273 31 2 313 87.220 
3 40 29 981 27 1077 91.086 
4 11 1 15 109 136 80.147 

Grand Total 270 316 1072 142 1800  

 
Proportion 
percent (%) 

98.540 100.958 99.535 104.411  
Absolute 
accuracy 

 difference 4 3 5 6 18 87.500 

 
Table 3. Predicted LFAs, their lithology, equivalent FA, and depositional setting 

Lithofacies 
associations 

lithology 
Equ. 
FA 

Environmental 
conditions 

LFAs 1 
dolomudstone with anhydrite patches, 

micritic and stromatolite layers 
FA -1 Tidal flat 

LFAs 2 
wackestone to packstones, microcrystalline 

dolomite and anhydrite patches 
FA-2 Lagoon 

LFAs 3 
Well-sorted oolitic, bioclast to intraclasts grainstone, 

highly porous 
FA-3 Shoal 

LFAs 4 
Fine-laminated argillaceous limestones, 

Lime mudstone to wackestones 
FA-4 Open marine 
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    Fenestral fabrics and keystone vugs remark the mudstone/wackestones of the middle and 
lower intertidal zone. Facies 3, 4, 5, and 6 characterize restricted sub-environments (lagoons) 
formed landward of the shoal barriers with low energy, low biodiversity, and temporal high 
salinity conditions. Water restriction was most likely affected by the efficiency of the shoal 
complex in time and space. The facies 7, 8, 9, 10, and 11 represent barrier shoals, the high-
energy parts of the ramp, and are the most significant facies in the studied formations due to 
their high porosity and permeability. Facies 12 (Bioclast Wackstone) is related to fore shoals 
or open marine settings of the ramp (below storm wave base), based on their sedimentological 
and faunal features.  

 
Reservoir Quality  
 
The petrophysical characteristics of the facies and facies associations were determined in the 
cored wells from core-measured porosity and permeability. Then, the results were extended to 
predicted lithofacies and LAFs in the uncored wells (Dashti et al., 2016; Sfidari et al., 2018, 
2021). By examining the relationships between facies and their reservoir quality, the paleo-
environmental control on the petrophysical properties of the facies and predicted lithofacies 
was inferred. This assessment uncovered that the most potential pore spaces are observed in 
grain-dominated facies related to the high-energy shoal setting (Fig. 5).  
    In most facies of this setting, porosity and permeability values vary from 0 to 35% and 0 to 
500md respectively (Figs. 5 & 6). The pore spaces are predominantly inter-particle, with some 
moldic type. A linear relation between porosity and permeability of these facies indicates the 
significant role of depositional conditions on reservoir quality. Analysis of porosity distribution 
in the predicted lithofacies and LFAs in the uncored wells provide comparable results (Fig 6). 
 
Three-Dimensional Modeling  
 
The 3D model of the studied formations was established based on the spatial distribution of 
their constituent LFAs, the nature of the depositional setting, and the stratigraphic framework 
(Dashti et al., 2016; Maahs et al., 2024; Norsahminan et al., 2024). A three-dimensional UGC 
map of top K1 was available for this study. 
 

 
Figure 5. Porosity-permeability cross-plot of the studied facies associations, indicating the highest 
reservoir quality in the shoal FA. The poor quality of some facies in this setting is due to the pervasive 
diagenetic features 
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Figure 6. Porosity and permeability distribution in the studied LFAs 
 
    The other four structural surfaces (top K2, K3, K4, and Nar anhydrite) were built based on 
this surface, given no major fault effects (Asadi-Eskandar et al., 2013). The top K1 and top 
Nar anhydrite were selected as the upper and lower boundaries of the studied succession 
model, respectively. The five structural surfaces - top K1, K2, K3, K4, and Nar anhydrite - 
were used as the framework for the modeling, resulting in four sub-grids (the main reservoir 
zones). The horizontal dimensions of the model were 60 × 68 km in the Y and X directions, 
respectively. The 3D model comprises 16320 grid cells with lateral dimensions of about 500 
× 500 m. The further subdivision of the model in vertical scale is 300 layers with a 1 m 
resolution grid (Fig. 7).   
    The spatial distribution of the LFAs and the geometry of the depositional model are properly 
understood by geostatistical analysis of the model (c.f. Dubrule, 1998; Deutsch, 2002; Dashti 
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et al., 2016; Maahs et al., 2024; Norsahminan et al., 2024). The stochastic simulation method, 
also known as sequential indicator simulation and kriging was applied here to simulate and 
generate the 3D model of the studied succession. The four major LFAs were involved in the 
modeling representing tidal flat (LFAs 1), lagoon (LFAs 2), shoal (LFAs 3), and open marine 
(LFAs 4) environments.   

 

 
Figure 7. Three-dimensional intersection of the four main sub-grid reservoir zones, as a fundamental 
stratigraphic framework for subsequent simulating of the litho-facies associations 
 

 
Figure 8. Cross-section of the lithofacies associations modeled in the studied field 
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    The sequential indicator simulation is based on the indicator approach (Journel, 1983; 
Gomez-Hernandez & Srivastava, 1990). This method is one of the most popular approaches, as 
a pixel-based modeling algorithm, in producing multiple facies realization. This approach 
attempts to model the facies/lithofacies based on a variogram that represents the size and 
frequency of the facies. The experimental variograms were first calculated from the facies curve 
in the wells. After that, the experimental variograms were fitted to the variogram model to get 
the horizontal and vertical of the facies (Table 4). As a final point, the simulation was performed 
by the use of simple kriging (Figs. 8-10). 
    Facies modeling of the formations indicates a gentle shallowing from zone K4 to zone K3. 
The connectivity of shoal facies (LFAs 3) is well observed in zone K4, whereas in zone K3 the 
connectivity of LFAs 2 (lagoon facies) is evident (Figs. 8-10). This trend, indicative of 
shallowing in depositional settings, is associated with a decrease in reservoir quality from K4 
to K3. Zone K2 is characterized by dominant LFAs 3 (shoal) and minor LFAs 4 (open marine) 
(Figs. 8-10). Compared to zone K3, a gentle deepening in the depositional environment is 
evident, which is associated with greater connectivity of shoal facies NW ward, hence better 
reservoir quality. 
 
Table 4. Variogram data of the main facies associations/LFAs of the studied formations. These data 
were used for 3D facies modeling by indicator simulation 

LFAs Variogram azimuth Variogram type 

Tidal flat 2500 1800 11 43 Exponential 
Lagoon 2700 1700 17 43 Exponential 
Shoal 3000 1900 21 43 Exponential 

Open marine 2400 1600 13 43 Exponential 

 

 

 
Figure 9. Facies model based on indicator simulation with kriging. The block model of the entire field 
(top) and 3D cut slice in the x and y axis (below). Vertical exaggeration is X5 
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Figure 10. Facies model based on indicator simulation with kriging. The block model of the field (top) 
and 3D cut slice in the x and y axis (below). Vertical exaggeration is X15 
 
    Zone K1 is characterized by the dominance of LFAs 1 (tidal flat facies). Compared to zone 
K2, a gentle shallowing in the depositional environment and a decrease in reservoir quality are 
observed. Considering the age of the studied zones (Fig. 1), a 2nd-order relative sea-level fall 
during the development of the zones (from K4 to K1) is understandable from facies modeling 
of the formations (Figs. 8-10). 
 
Conclusions 
 
The calibration of petrographic and wireline log data with rock types by an Intelligent Neural 
Network approach establishes a reliable framework for reservoir modeling. This model 
provides significant information on the depositional setting, diagenesis, and the vertical and 
lateral distribution of the reservoir facies.  
    Twelve facies are identified and classified into four facies associations representing tidal flat 
(LFAs 1), lagoon (LFAs 2), shoal (LFAs 3), and open marine (LFAs 4) conditions on a 
carbonate ramp. Indicator simulation with kriging, based on the predicted lithofacies from 
wireline logs, is applicable for facies modeling and discriminating reservoir zones in the studied 
formations. 
    Substantial core data was required to validate the predicted lithofacies from wireline logs. 
The neural network method is a great help in correlating log-derived facies with core-based 
facies. 
    The dominance of the LFAs 3 (shoal facies) in the studied formations plays a significant role 
in their high reservoir quality. So, depositional conditions are the main controls on the reservoir 
quality of the formations, although diagenetic processes are considerable. 
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    The neural network and pattern recognition method successfully predicted lithofacies in 
uncored wells, with absolute accuracy ranging from 77% for LFAs 1 to 91% for LFAs 3, and 
an average accuracy of 87%.  
    Facies modeling based on indicator simulation with kriging can be used for relative sea level 
change analysis, especially where the core-derived data are limited. 
    Facies modeling of the formations indicates a gentle shallowing trend from zone K4 to zone 
K3. The connectivity of LFAs 3 is well observed in zone K4, whereas in zone K3, LFAs 2 
connectivity is evident. Zone K2 is characterized by dominant LFAs 3 and minor LFAs 4, while 
zone K1 is dominated by LFAs 1. 
 
Acknowledgments 
 
The authors express their sincere gratitude to the geology department of POGC for providing 
the data utilized in this study. 
 
References 
    
Ahr, W.M., 1973. The carbonate ramp: an alternative to the shelf model. Trans-Gulf Coast Association 

of Geological Society, 23: 221-225. 
Al-Anazi, A., Gates, I. D., 2010. A support vector machine algorithm to classify lithofacies and model 

permeability in heterogeneous reservoirs, Engineering Geology, 114: 267-277.  
Al-Aswad, A., 1997. Stratigraphy, sedimentary environment and depositional evolution of the Khuff 

Formation in south-central Saudi Arabia. Journal of Petroleum Geology, 20: 1-20. 
Alsharhan, A.S., Kendall, C.G. St.C., 2003. Holocene coastal carbonates and evaporates of the southern 

Arabian Gulf and their ancient analogues. Earth-Science Reviews, 61: 191-243. 
Alsharhan, A.S., 1993. Facies and sedimentary environment of the Permian carbonates (Khuff 

Formation) in the United Arab Emirates. Sedimentary Geology, 84: 89-99. 
Alsharhan, A.S., 2006. Sedimentological character and hydrocarbon parameters of the middle Permian 

to Early Triassic Khuff Formation, United Arab Emirates. Geo- Arabia, 11: 121-158. 
Angiolini, L., Balini, M., Garzanti, E., Nicora, A., Tintori, A., Crasquin, S., Muttoni, G., 2003. Permian 

climatic and paleogeographic changes in the Northern Gondwana: The Khuff Formation of interior 
Oman, Paleogeography, Paleoclimatology, Palaeoecology, 191: 269-300. 

Arab Oil and Gas Magazine, 2003. South Pars production above target rate with only 15 of the 20 
planned wells drilled. The Arab Petroleum Research Center. AOGM, 14-16. 

Asadi-Eskandar, A., Rahimpour-Bonab, H., Hejri, S., Afsari, K., Mardan, A., 2013. Consistent 
Geological-Simulation Modeling in Carbonate Reservoirs, a case study from the Khuff Formation, 
Persian Gulf. Journal of Petroleum Science and Engineering. (in press).  

Avrell, M., Bádenas, B., Bosence, D.W.J., Waltham, D.A., 1998. Carbonate production and offshore 
transport on a late Jurassic carbonate ramp (Kimmeridgian, Iberian basin, NE Spain): evidence from 
outcrops and computer modelling. In: Wright, V.P. & Burchette, T.P. (Eds) Carbonate ramps. 
Geological Society of London, Special Publications, 149: 137-161. 

Burchette, T.P., Wright, V.P., 1992. Carbonate ramp depositional systems. Sedimentary Geology, 79: 
3-57. 

Dashti, A., Ebrahim, S., 2016. Physical properties modeling of reservoirs in Mansuri oil field, Zagros 
region, Iran. Petroleum Exploration and Development, 43(4): 611-615. 

Derek, H., Johns, R., Pasternak, E., 1990. Comparative study of a back propagation neural network and 
statistical pattern recognition techniques in identifying sandstone lithofacies. Proceedings 
1990Conference on Artificial Intelligence in Petroleum Exploration and Production. Texas A and 
M University, College Station, TX, 41-49.  

Deutsch, C. V., 2002. Geostatistical Reservoir Modeling (Applied Geostatistics Series). Oxford, New 
York. 

Dubois, M, K., Bohling, G, C., Chakrabarti, S., 2007. Comparison of four approaches to a rock facies 
classification problem, Computers and Geosciences, 33 (5): 599-617. 



Geopersia 2024, 14(2): 439-452  451 

 

Dubrule, O., 1998. Geostatistics in petroleum geology, AAPG Special, 38. 
Ehrenberg, S. N., Nadeau, P. H., Aqrawi, A. A. M., 2007. A comparison of Khuff and Arab reservoir 

potential throughout the Middle East. AAPG Bulletin, 91: 275-286. 
Esrafili-Dizaji, B., Rahimpour-Bonab, H., 2009. Effects of depositional and diagenetic characteristics 

on carbonate reservoir quality: a case study from the South Pars Gas field in the Persian Gulf. 
Petroleum Geoscience, 15: 325-344. 

Fakhar, M., Rezaee, P., Karimian, A., 2022. Microfacies, depositional environment, and sequence 
stratigraphy of the carbonate-evaporate successions of the Kangan Formation in the central part of 
the Persian Gulf. Journal of Stratigraphy and Sedimentology Researches University of Isfahan, 115-
146. 

Flugel, E., 2010. Microfacies Analysis of Carbonate Rocks. Analyses, Interpretation and Application. 
Springer Verlag, 976 pp. 

Ghazban, F., 2007. Petroleum Geology of the Persian Gulf. Adviser: H. Motiei. University of Tehran 
press, 707 pp. 

Gomez-Hernandez, J., Srivastava R. M., 1990. ISIM 3D: An ANSI-C three-dimensional and multiple 
indicator conditional simulation programs: Computers and Geosciences, 16: 355-410. 

Iloghalu, E., 2003. Application of neural networks technique in lithofacies classifications used for 3-D 
reservoir geological modeling and exploration studies. AAPG Annual Meeting Abstract. 

Insalaco, E., Virgone, A., Courme, B., Gaillot, J., Kamali, M., Moallemi, A., Lotfpour, M., Monibi, S., 
2006. Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore 
Fars, Iran: Depositional system, biostratigraphy and stratigraphic architecture. GeoArabia, 11: 75-
176. 

Journel, A. G., 1983, Nonparametric estimation of spatial distributions: Mathematical Geology, 15: 445- 
468. 

Kalhori, M., Mehrabi, H., Sfidari, E. and Khiabani, S.Y., 2024. Target zone selection for hydraulic 
fracturing using sedimentological and rock mechanical studies with the support of the machine 
learning method of cluster analysis. Geoenergy Science and Engineering, 237, 212826. 

Khalifa, M.A., 2005. Lithofacies, diagenesis and cyclicity of the ‘Lower Member’ of the Khuff 
formation (late Permian), Al Qasim Province, Saudi Arabia, Journal of Asian Earth Sciences, 25 
(5): 719-734.  

Koehrer, B.S., Heymann, C., Prousa, F., Aigner, T., 2010. Multiple-scale facies and reservoir quality 
variations within a dolomite Body-Outcrop analog study from the Middle Triassic, SW German 
Basin. Marine and Petroleum Geology, 27: 386-411. 

López, J.M.P., Poyatos‐Moré, M., Howell, J., 2024. Facies analysis and sequence stratigraphy of 
shallow marine, coarse‐grained siliciclastic deposits in the southern Utsira High: The Late Jurassic 
intra‐Draupne Formation sandstones in the Johan Sverdrup Field (Norwegian North Sea). Basin 
Research, 36(1): p.e12833. 

Maahs, R., Kuchle, J., Rodrigues, A.G., Trombetta, M.C., dos Santos Alvarenga, R., Barili, R., Freitas, 
W., 2024. Three-dimensional geological modeling applied to multiscale heterogeneity of a reservoir 
analog: paleocoastal deposits from the Rio Bonito Formation, Paraná Basin. Marine and Petroleum 
Geology, p.106930. 

Moradi, M., Kadkhodaie, A., Rahimpour-Bonab, H., Kadkhodaie, R., 2024. Integrated reservoir 
characterization of the Permo-Triassic gas reservoirs in the Central Persian Gulf. Petroleum. 

Norsahminan, D.N.P., Islam, M.A., Thota, S.T., Shalaby, M.R., 2024. 3D reservoir characterization of 
the Mangahewa Formation, Mangahewa Field, Taranaki Basin, New Zealand. Energy Geoscience, 
5(2): 100266. 

Qi, L., Carr, T.R., Goldstein, R.H., 2007. Geostatistical three-dimensional modeling of oolite shoal, St. 
Louis Limestone, southwest Kansas. The American Association of Petroleum Geologists. Bulletin, 
91(1): 69-96.  

Qi, L.S., Carr T.R., 2006. Neural Network Prediction of Carbonate Lithofacies from Well Logs, Big 
Bow &Sand Arroyo Creek Fields, Southwest Kansas: Computers and Geosciences, 32: 947-964. 

Rahimpour-Bonab, H., 2007. A procedure for appraisal of a hydrocarbon reservoir continuity and 
quantification of its heterogeneity, Journal of Petroleum Science and Engineering, 58 (1-2): 1-12. 

Rahimpour-Bonab, H., Asadi-Eskandari, A., Sonei, A., 2009. Control of Permian-Triassic Boundary 
over reservoir characteristics of South Pars gas field, Persian Gulf. Geological journal, 44: 341-364. 



452  Sfidari et al. 

Rahimpour-Bonab, H., Esrafili-Dizaji, B., Tavakoli, V., 2010. dolomitization and precipitation in 
permo-triassic carbonates at the South Pars gas field, offshore Iran: controls on reservoir quality, 
Journal of Petroleum Geology, 33(1): 43 - 66. 

Saggaf, M.M., Nebrija E.L., 2003. A fuzzy logic approach for the estimation of facies from wire-line 
logs: AAPG Bulletin, 87(7): 1233-1240. 

Serra, O., 1986. Fundamentals of well log interpretation. Vol. 2: the interpretation of logging data. 
Elsevier, Amsterdam, 684 pp. 

Sfidari, E., Amini, A., Kadkhodaie, A., Ahmadi, B., 2012.  Electrofacies clustering and a hybrid 
intelligent based method for porosity and permeability prediction in the South Pars Gas Field, 
Persian Gulf, Journal of Geopersia, 2(2): 11-23.  

Sfidari, E., Amini, A., Kadkhodaie, A., SeyedAli, M., Seyed Mohammad, Z., 2018. Diagenetic and 
depositional impacts on the reservoir quality of the Upper Jurassic Arab Formation in the Balal 
Oilfield, Offshore Iran. Acta Geologica Sinica‐English Edition, 92(4): 1523-1543. 

Sfidari, E., Kadkhodaie-Ilkhchi, A., Najjari, S., 2012. Comparison of intelligent and statistical clustering 
approaches to predicting total organic carbon using intelligent systems. Journal of Petroleum 
Science and Engineering, 86-87, 190-205. 

Sfidari, E., Sharifi, M., Amini, A., Zamanzadeh, S.M., Kadkhodaie, A., 2021. Reservoir quality of the 
Surmeh (Arab-D) reservoir in the context of sequence stratigraphy in Salman Field, Persian Gulf. 
Journal of Petroleum Science and Engineering, 198: 108180. 

Shahkaram, M., Aleali, M., Tavakoli, V., Maleki, Z., 2022. Description and correlation of facies and 
depositional sequences of Kangan and Dalan formations in Permian-Triassic carbonate ramp, 
central and eastern Persian Gulf. Applied Sedimentology, 10(19): 186-202. 

Shahkaram, M., Aleali, M., Tavakoli, V., Maleki, Z., 2022. Description and correlation of facies and 
depositional sequences of Kangan and Dalan formations in Permian-Triassic carbonate ramp, 
central and eastern Persian Gulf. Applied Sedimentology, 10(19): 186-202. 

Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Heward, A.P., Horbury, A.D., 
Simmons, M.D., 2001. Arabian plate sequence stratigraphy, GeoArabia Spec. Publ., Bahrain Gulf 
Pet, 2, 374 pp. 

Tavakoli, V., Rahimpour-Bonab, H., 2012. Uranium depletion across Permian-Triassic Boundary in 
Persian Gulf and its implications for paleo-oceanic conditions. Paleogeography, Paleoclimatology, 
Paleoecology 350-352: 101-113. 

Tavakoli, V., Rahimpour-Bonab, H., Esrafili-Dizaji, B., 2011. Diagenetic controlled reservoir quality 
of South Pars Gas field, an integrated approach. Competes Rendus Geosciences, 343(1): 55-71. 

Wilson, J.L., 1975. Carbonate Facies in Geologic History. Springer-Verlag, New York. 
Wong, P., Jian, F., Taggart, I., 1995. A critical comparison of neural networks and discriminant analysis 

in lithofacies, porosity, and permeability predictions. J. Pet. Geol, 18 (2): 191-206. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This article is an open-access article distributed under the terms and conditions of 
the Creative Commons Attribution (CC-BY) license. 

 


