
Geopersia 2025, 15(1): 1-13 
DOI: 10.22059/GEOPE.2024.370862.648742 

 

RESEARCH PAPER   

 

 

Prediction of Reservoir Compressibility Using Subsurface 
Cores, Well Logs, and Seismic Data by Neural Network 
 
Jafar Vali 1,2, Farnusch Hajizadeh 1, * 

 
1 Department of Mining Engineering, Faculty of Engineering, Urmia University, Urmia, Iran 
2 Reservoir Rock and Fluids Research Group, Petroleum Engineering Department, Research Institute of 
Petroleum Industry, Tehran, Iran 
 
Received: 09 January 2024, Revised: 21 February 2024, Accepted: 27 February 2024 
 
Abstract 
This study predicted the three-dimensional pore volume compressibility of carbonate Sarvak Formation 
from the Bangestan group. Primary data of the model were petrophysical parameters, measured 
compressibility factor on core samples, conventional well logs, and three-dimensional seismic attributes. 
The proposed experimental models of compressibility prediction are based on the rock’s porosity. 
However, due to the structural and textural complexities of carbonate formations, compressibility is not 
solely a function of the rock’s porosity but also depends on other petrophysical parameters. Neural 
network algorithms were employed to propagate the compressibility data along the well and to predict 
the distribution of compressibility within a three-dimensional seismic acquisition area. A probabilistic 
neural network algorithm resulted in a better correlation than an artificial neural network algorithm. It 
resulted in a correlation of 85% between the predicted and measured compressibility along logged 
intervals of the wells. 11 optimum number of seismic attributes were extracted to find the best 
correlation and minimum error between the generated and target attributes. The correlation coefficient 
of 91% indicated the high accuracy of the model and the optimal choice of neural network algorithms. 
The results of this study provide insights into the application of seismic data to the field-wide prediction 
of static models of reservoir compressibility. 
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Introduction 
 
A hydrocarbon reservoir is a complex system of rocks with different fluids presenting in the 
pore spaces. Hydrocarbons and formation water flow inside the reservoir rock pore bodies. The 
compression of a reservoir rock results in changing the shape of pore bodies and closing flow 
channels, consequently reducing the formation permeability (Farahani et al., 2022). However, 
this compression provides part of the necessary energy for oil outflow. Pore volume 
compressibility (𝐶௣௩) is of great importance in reservoir engineering studies and is still under 
investigation by many researchers (Ashena et al., 2020; Cheng et al., 2020; Moosavi et al., 
2022; Wu et al., 2023; Zhao et al., 2021). It is defined as fractional volume change concerning 
the effective overlying stress (Farahani et al., 2022). Detailed mathematical equations were 
presented in other articles (Ashena et al., 2020; Farahani et al., 2022).  
    It is vital to define compressibility to evaluate the thrust energy that the rock can provide in 
the production process. It is also needed for reserve estimations and geomechanical analysis. It 
affects the storage, production behavior, recycling, and mechanical properties of reservoir 
rocks. The compressibility coefficient of reservoir rocks has been reported as one of the critical 
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factors in the subsidence caused by fluid extraction from the reservoir (Daïm et al., 2002; 
Ferronato et al., 2006). Simulation studies showed that negligence of compressibility can result 
2 to 25% underestimation of hydrocarbon production prediction with the highest error in shale 
reservoirs (Bachir, 2014). In some cases, a constant coefficient or an empirical relationship is 
embedded due to insufficient information on rock compressibility (da-Silva et al., 2015).  
    In some cases, due to core recovery issues, enough representative core samples are not 
reachable for compressibility determination (Sharifigaliuk et al., 2021). Hence, normal practice 
is to apply 𝐶௣௩ versus porosity (𝜙) correlations derived from nearby extensive databases of core 
measurements (Crawford et al., 2011). Ashena et al. (2020) proposed a log‑based rock 
compressibility estimation for an Iranian carbonate formation. They observed a rather reliable 
estimation of pore compressibility, except for intervals with extremely large wellbore washouts.  
    In terms of structural and textural complexities of carbonate rocks, compressibility is not 
only a function of the rock’s porosity but also depends on various other petrophysical 
parameters. Hence, there is a need for field-wide estimation of compressibility employing an 
indirect approach. Specifically, artificial neural networks (ANN) have been widely used in 
many aspects of geology and petroleum industry (Azadpour et al., 2015; Hassan et al., 2021; 
Puskarczyk, 2019; Sun & Dong, 2022; Tanko & Bello, 2020). In ANN the real measured data 
are used for training and validation of the model. Hence, the obtained correlations have high 
accuracy. ANN technique has been successfully applied to develop predictive models for the 
physico-mechanical rock characteristics estimation (Afshari et al., 2014; Hassan et al., 2021).  
    In the present study, the 𝐶௣௩ was measured on some drilling cores of four different wells. 
The results and well logs (density, neutron porosity, and acoustic impedance) were utilized as 
input data for neural network algorithms, and the reservoir formation compressibility along the 
well axis was predicted. Using 3-D seismic attributes, well axis 𝐶௣௩  data, artificial neural 
network algorithms, and expanding it along a 3-D seismic data, compressibility was predicted 
in a three-dimensional wide range with high accuracy. The results of this study provide insights 
into the application of seismic data to field-wide prediction of reservoir compressibility. 
 
Geological description 
 
Sarvak Fornation of the Bangestan Group in Southwest Iran (Dezful embayment and Abadan 
plain) was the focus of this study. The four studied wells cross different formations of this 
group, including Ilam, Sarvak, and Kazhdumi (Assadi et al., 2023). The Sarvak Formation, as 
one of the most important oil-producing zone (Mehrabi et al., 2023), is the main stratigraphic 
unit of the Bangestan Group in southern Iran (Fig. 1). All samples in this study were selected 
from the Sarvak Formation, which consists of limestone with minor shale (Rikhtegarzadeh et 
al., 2017). Dissolution and neomorphic caused by diagenesis, and stylolite-related 
dolomitization resulted in increasing the quality of the reservoir (Rahimpour-Bonab et al., 
2012). Cementation, compaction, and micritization have an adverse effect on reservoir 
properties (Sabouhi et al., 2022). 
 
Methodology 
 
Fig. 2 shows the location of the studied seismic area and four selected vertical wells of a 
hydrocarbon field in Southwest Iran. The geological area of the studied zone was approximately 
24 square kilometers. There were about 640 seismic in-lines and 240 seismic cross-lines. The 
wells’ position was shown in terms of seismic lines and coordinates (X, Y).  
    320 carbonate core plug samples were prepared from the studied wellbores and underwent 
compressibility measurement. The petrophysical properties of the cleaned samples were 
routinely measured at ambient conditions. The coreLab apparatus, named CMS-300, was 
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employed to measure the petrophysical properties of plug samples at five different confining 
pressures of 5.5, 10, 15, 20, and 25 MPa. The helium gas was employed to determine effective 
porosity and permeability by gas expansion measurements. More details of the experimental 
procedures were explained in previous manuscripts (Farahani et al., 2022; Feng & Pandey, 
2017).  
    Fig. 3 shows the workflow of the present research. Firstly, the petrophysical properties of 
core plug samples of the four selected wellbores were determined. The neutron porosity logs 
were calibrated with the data obtained from the corresponding core samples. The well logs are 
valuable tools for determining the petrophysical parameters along the wellbore axis due to their 
continuity, availability, and low cost (Moore et al., 2011). Then, the compressibility of selected 
samples was used to train both ANN and probabilistic neural network (PNN) models and predict 
the compressibility of other sections of the downhole logs along the wells. A 𝐶௣௩  log was 
generated for each wellbore. An equation was also derived, showing the relation between the 
measured compressibility and porosity. The generated equation was compared with the ones 
from other researchers. 
 

 
Figure 1. shows the geological section of the studied area. The lithostratigraphic column of Southwest 
Iran illustrates stratigraphic units of the Cenozoic and Cretaceous. Bangestan Group is shown at the 
right (Esrafili-Dizaji & Rahimpour-Bonab, 2019) 
 

 
Figure 2. Shows the study area and four selected wells in the seismic data acquisition. The horizontal 
axis is in-line seismic data and the vertical axis is cross-line seismic data. The position of the wells was 
given in terms of seismic lines and coordinates (X, Y) 
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Figure 3. shows the workflow of this study 

 
    Using the optimal velocity model, the depth map of the horizons of the studied formations was 
determined. The workflow to prepare the seismic inversion includes seismic data averaging at sea 
level, data processing to reduce noise, velocity analysis, seismic data conversion to velocity 
model, and processing output data with XY coordinates in tracking headers. The generated 𝐶௣௩ 
logs were utilized to train the ANN and PNN models from the logged intervals in the seismic 
wellbore positions. Then, the 𝐶௣௩ values were predicted from well log data and seismic attributes.  
    An acoustic impedance model was developed around the seismic line and seismic interpreted 
horizons. The horizons define the model’s geometry, while the well logs control the acoustic 
impedance values of each layer. To create attributes of the seismic data at the well site, the 
optimal correlation and error between the generated attributes and the target were evaluated. 
The seismic attributes were calculated from seismic amplitudes, including amplitude envelope, 
instantaneous frequency, instantaneous cosine phase, amplitude weighted cosine phase, 
weighted amplitude frequency, weighted amplitude-phase, and apparent polarity. Derivative 
attributes include derivative, derivative instantaneous amplitude, and second derivative. Also, 
they are instantaneous domain, quadratic and time attributes, etc. Finally, 3-D maps of 𝐶௣௩, 
acoustic impedance (AI), and porosity were generated.  
 
Experimental 𝐶௣௩  ̶𝜙 relationships 
 
Many researchers have studied the experimental relationships of compressibility, mainly versus 
porosity (Farahani et al., 2022). For example, Horne (1990) proposed some correlations for 
calculating 𝐶௣௩  based on initial porosity for limestone, consolidated, and unconsolidated 
sandstone rocks. Equation 1 represents a correlation for carbonate rocks. 

𝐶௣௩ = 𝑒𝑥𝑝( 4.026 − 23.07𝜙 + 44.28𝜙ଶ) × 6.9 × 10ିଽ 𝑀𝑝𝑎 − 1                         (1) 
Jalalh (2006a, b) investigated compressibility up to a pressure of 69Mpa at room temperature 
and 52°C. He showed that compressibility increases with increasing temperature and concluded 



Geopersia 2025, 15(1): 1-13  5 

 

that 𝐶௣௩ increases as porosity decreases.  

𝐶௣௩ = ൬
1

1.022ିଶ + 1.681ିଶ(𝜙)ଵ.଴ହ
൰ × 6.9 × 10ିଽ 𝑀𝑃𝑎ିଵ                           (2) 

Akhoundzadeh et al. (2011) reported a 𝐶௣௩ of 18 to 71.7 ×10-9 Mpa-1 for limestone samples. 
They developed a robust correlation with porosity (Equation 3). 

𝐶௣௩ = ൬
1

0.367 + 0.099𝐿𝑛(𝜙)
൰ × 6.9 × 10ିଽ 𝑀𝑃𝑎ିଵ                           (3) 

    In the above equations, 𝐶௣௩  is pore volume compressibility and is porosity fraction. 
Usually, the number of samples is limited in the experimental studies. Therefore, the proposed 
equations should be modified with new laboratory data for other reservoirs. So far, the proposed 
relations were only based on the initial porosity. Farahani et al. (2022) derived an empirical 
relationship between measured pore compressibility and porosity at each stress step for a 
carbonate reservoir. They considered the importance of the net stress effect. 
 
Seismic reservoir characterization 
 
Interpretation of seismic reflection data includes stratigraphical and structural interpretation. 
Seismic interpretation is considered the first step in building a 3D reservoir model (Wu & Hale, 
2016). The primary purpose of seismic inversion is an acoustic impedance model that is an 
acceptable correlation and integration of seismic and well log data, especially density and 
compressional wave velocity logs. It is directly comparable to the properties of the reservoir. 
The main goal is to minimize the difference between well measurement data and model and 
seismic-based datasets (Jia et al., 2023). Seismic data were processed under true amplitude 
preservation and pre-accumulation time migration from the zero-phase attributes. Both are 
prerequisites for using inversion technology on seismic data (Schleicher et al., 2007). 
    The seismic attributes data are employed to visualize the reservoir characterization. Suitable 
seismic property is directly sensitive to the desired geologic feature or reservoir property. It allows 
us to define the structural or sedimentary environment (Chopra & Marfurt, 2007). Seismic 
attributes delineation can be performed on a single time slice or a group of time slices (bulk) of 
seismic data. Volumetric seismic attributes not only reduce the time required for seismic 
interpretation but also can eliminate the effect of noise in seismic data (Sahai and Soofi, 2006). 
 
Artificial neural network 
 
The most straightforward and efficient type of neural network is the multilayer perceptron 
model, which consists of an input layer, one or more hidden layers, and an output layer 
(Puskarczyk, 2019). Networks provide solutions for model selection, model robustness, 
validation set selection, validation effort size, and network architecture optimization (Burden 
& Winkler, 2008). Scaled Conjugate Gradient (SCG) is based upon a class of optimization 
techniques well known in numerical analysis as the Conjugate Gradient Methods, which is fully 
automated, including no critical user-dependent parameters (Karimpouli et al., 2023; Møller, 
1993). In this study, the LMA technique (Levenberg, 1944; Marquardt, 1963), as a nonlinear 
least square method belonging to the continuous optimization domain, was used. It minimizes 
a multivariate function expressed as the sum square of errors (Hajian et al., 2012; Ramadasan 
et al., 2017). The PNN approach has widely been used as a framework for lithology 
classification using seismic attributes (Chaki et al., 2022). It uses a class of probability density 
function estimators that asymptotically approach the underlying parent density, provided that it 
is smooth and continuous (Soares et al., 1996). PNN was also applied for a more precise 
prediction. In both ANN and PNN models, 65% of the data were randomly selected for data 
analysis and training, and the rest for model validation. 
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Result and discussion 
 
A comparison of 𝐶௣௩ of laboratory measurement data and the empirical relationships from other 
researchers was shown in Fig. 4. Not good compatibility between laboratory measurement data 
and experimental relationships of other researchers was observed. Therefore, these empirical 
relations cannot be used to predict the compressibility of the samples of this study.  
 
Generation of 𝐶௣௩ log along the wellbore 
 
Density, neutron porosity, and acoustic impedance logs are correlatable with compressibility. 
By using the ANN and providing these characteristics as input, it is possible to predict the 
compressibility. The ANN method resulted in a validation coefficient of 76%. By applying the 
PNN approach, the derived compressibility log data was validated nearly 85% with core 
measurement data for all the wellbores. To predict and estimate the target in each well, the best 
data must be selected. Fig. 5 shows the extraction of selected attributes at each well, using the 
PNN model.  
 

 
Figure 4. shows pore volume compressibility of laboratory measurement data and experimental 
relationships, Such as, Horne (1995), Jalalh (2006), and Akhoundzadeh et al. (2011) 
 

 
Figure 5.  shows the predicted compressibility logs using the PNN approach along the wellbores by 
selected well attributes (Density, neutron porosity, and acoustic impedance logs) 
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Prediction of 𝐶௣௩ for whole seismic area  
 
In addition to the well logs, seismic characteristics at the well position can be used to predict 
compressibility for the whole seismic area. Various attributes of the seismic cube data were 
used to find the optimal correlation and error between the generated characteristics and the 
targets. Fig. 6 shows that an optimal number of attributes was used to estimate compressibility 
with minimum error. 
    Using the seismic attributes at the wellbore position and 𝐶௣௩  logs, the 𝐶௣௩  values were 
predicted. Fig. 7 shows the acoustic impedance (AI) log versus predicted acoustic impedance 
(AI) from seismic attributes at each well data, applying ANN model.  
 

 
Figure 6. shows the optimal number of attributes used to estimate compressibility with minimum error 

 

 
Figure 7. shows the acoustic impedance (AI) log versus predicted acoustic impedance (AI) from seismic 
attributes at each well data, applying ANN model 



8  Vali & Hajizadeh 

    Fig. 8 shows the 𝐶௣௩ logs versus predicted 𝐶௣௩ by seismic attributes. The ANN approach was 
used for training and validation. The correlation coefficients of validation data were ranging 
from 0.7 to 0.81. 
    Similar to ANN approach, the same optimal number of attributes were used for PNN 
approach. Fig. 9 shows the correlation between predicted compressibility and the actual 
compressibility of the wells with coefficients ranging from 0.96 to 0.99%. Fig. 10 typically 
shows the high accuracy of the model and the optimal choice of PPN algorithm. 
    Using petrophysical and seismic data along the well-axis and neural network algorithms, 
reservoir parameters can be expanded along the seismic sections. Fig. 11 shows the predicted 
acoustic impedance, porosity, and compressibility in a cross-section across the wellbores in the 
Bangestan group. The PNN approach was used as it resulted in higher correlation coefficients 
than the ANN approach. Fig. 12 shows the prediction of the acoustic impedance, porosity, and 
compressibility data in the 3-D seismic volume. The proposed approach assists in a more 
accurate prediction of the well position from a 3-D map. 
 

 
Figure 8. shows the 𝐶௣௩ log versus predicted 𝐶௣௩ from seismic attributes at each well data, applying 
ANN model 
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Figure 9. shows the 𝐶௣௩ log versus predicted 𝐶௣௩ from seismic attributes at each well data, applying 
PNN model. The correlation coefficient and equations were presented for each wellbore 
 

 
Figure 10. shows the application of PNN model (curve in red color) in predicting the compressibility 
parameter in all selected wells 
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Figure 11. shows acoustic impedance (a), porosity (b), and compressibility (c) across the axis of four 
wells in the Bangestan group (from 2800 to 3600 m), SW of Iran 

 
Figure 12. shows the 3-D static model of (a): Acoustic Impedance, (b): Porosity, and (c): 
Compressibility in intersection with four studied wells 
 
Conclusions 
 
In this study, the compressibility estimation was investigated and predicted using the core 
measurement results, and input attributes of the well logs and seismic via neural network. The 



Geopersia 2025, 15(1): 1-13  11 

 

following conclusions have been derived: 
    There is a good relationship between measured compressibility versus porosity and a semi-
log equation was derived. However, the experimental relationships of other researchers cannot 
meet the expectations of a correct prediction for other reservoirs. 
    An extensive database containing a limited quantity of core samples yielded successful 
prediction of compressibility logs for the whole seismic area with a correlation coefficient of 
70 to 80% between predicted and measured compressibility. This approach is recommended 
for reservoir zones with no core or low core recovery.  
    PNN can result in a better correlation than artificial one (91 – 99% in comparison with 70 – 
81%), which is due to taking into account the most reliable data points than all the data that are 
used in ANN. 
    Using the 3-D compressibility static model, one can infer the variation of compressibility 
through the area and it can assist in well planning. Similarly, 3-D static models of porosity and 
acoustic impedance of the study zone can be generated. 
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Nomenclature  
Parameters 
3D: Three-Dimensional 
AI: Acoustic Impedance 
ANN: Artificial Neural Network 
BRANN: Bayesian Regularization Artificial Neural Network 
𝐶௣௩: Pore Volume Compressibility 
LMA: Levenberg and Marquardt Artificial 
PNN: Probabilistic Neural Network 
SCG: Scaled Conjugate Gradient 
Vp: Pore Volume 
Greek letters 
: Porosity 
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