
Geopersia 2024, 14(1): 45-62 
DOI: 10.22059/GEOPE.2023.360469.648718 

 

RESEARCH PAPER   

 

 
Estimating the uniaxial compressive strength of Esfandiar 
limestone strata based on their physical characteristics 
(Case study: North of Tabas City, Iran) 
 
Zohre Sharifi, Gholamreza Lashkaripour * , Mohammad Khanehbad, 
Mojtaba Rahimi Shahid  
 
Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Iran 
 
Received: 07 June 2023, Revised: 29 August 2023, Accepted: 23 September 2023 
© University of Tehran  
 
Abstract 
Uniaxial compressive strength is one of the most important properties of rocks, whose determination is 
important for rock engineering studies in civil engineering and mining projects. Determining the 
uniaxial compressive strength is time-consuming and expensive. Empirical relations obtained from 
easier methods can be used to reduce cost and time. In this research, using the artificial neural network 
method, experimental relationships have been presented to estimate the uniaxial compressive strength 
of limestones of the Esfandiar formation in the north of Tabas city. In this method, the physical 
properties of the rock sample include relative specific gravity, specific gravity, percentage of water 
absorption, and porosity as independent variables, and input parameters that are used to calculate the 
uniaxial compressive strength as a dependent variable. These relationships consist of a general structure 
with 4 inputs and 1 output, which was performed using a perceptron multilayer neural network. In this 
research, the root mean square error (RMSE) was investigated. The results of this research show that 
the amount of errors caused by testing, and validation is close to zero and these relationships can be 
used to estimate the uniaxial compressive strength of limestones of the Esfandiar formation. Also, the 
results of the artificial neural network have been compared with the results of multivariate regression, 
and the results show that the value of the confidence coefficient obtained from the artificial neural 
network is more acceptable. 
 
Keywords: Physical Properties, Limestone, Artificial Intelligence, East Of Iran, Uniaxial Compressive 
Strength. 
 
Introduction 
 
Determining the uniaxial compressive strength of rock is essential in most engineering projects. 
Uniaxial compressive strength of stone (UCS1) is one of the most useful mechanical parameters 
of stone, which is used more in design and engineering projects than other parameters of stone 
(Bieniawsk, 1976). The uniaxial compressive strength test is undoubtedly one of the best and the 
main pillar in geotechnical science, which is often used in rock mechanics and is often used as a 
serious and accurate indicator for a wide range of related issues. The uniaxial compressive 
strength of rock is 9 times more useful than the second most important rock mechanics parameter, 
the triaxial compressive strength (Cargill & Shakoor,1990). Cylindrical cores with certain 
dimensions are needed to perform the uniaxial compressive strength test. The device for 
performing this test is also equipped and non-portable, and to perform this test, it is necessary to 
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transport a significant amount of rock blocks from the site to the laboratory; Therefore, to carry 
out some studies (especially basic studies), there are methods that can be used to evaluate the 
uniaxial compressive strength indirectly and by using physical and engineering properties that 
require less time and cost to estimate. Among these methods, we can mention single and 
multivariate linear and non-linear regression and artificial intelligence methods (neural network). 
    In recent years, many advances have been made in the rapid processing of information and 
numerical calculations by means of software. These methods speed up the calculation, reduce 
the error, and also provide solutions that were not possible with experimental methods. One of 
these advances and innovations in modeling and calculation through artificial neural networks. 
The technique of artificial neural networks has been developed with inspiration from the 
functioning of the human brain and nervous system. Artificial neural networks are actually a 
small network of artificial neurons that are trained to solve complex problems. In other words, 
neural networks are parallel distributed processors that have a natural tendency to store 
empirical knowledge. These networks, like any other system, can be trained and become 
intelligent in a certain range (Norusis, 1994, Hagan et al, 2014). The most widely used 
architecture of neural networks is forward-feed multilayer networks, which are called Multi-
Layer Perceptron networks, abbreviated as Mlp (Emami & Yathrabi, 2013). 
    Artificial neural network models are one of the powerful tools of data analysis in many different 
scientific fields, which have attracted the attention of geotechnical engineers (Pala et al., 2007). 
In this field, much research has been done to predict the properties of soil and materials by means 
of neural networks, and different researchers have used neural networks in the topics of 
geotechnical engineering, engineering geology, structure, and building (Minhaj, 2019). Many 
studies in the field of rock mechanics have used artificial neural networks to achieve experimental 
relationships, among which the following studies can be mentioned: (Motahari., 2005; Ajal Luian 
& Mansouri., 2013;Esmaili et al., 2015; Abdi & Ghasemi Dahnavi., 2018; Aras et al., 2019; 
Ebdali et al., 2020; Barham et al., 2020; Rastegarnia et al., 2021; Moussas et al., 2021; Jin et al., 
2022; Hacıefendioğlu et al., 2022 ; Abedelhedi et al., 2022; Hassan &, Arman., 2022). 
    In general, one of the important applications of neural networks in rock mechanics is the 
estimation of expensive and time-consuming tests using less expensive and simpler tests. Due to 
their spread on the earth's surface and as an important group of sedimentary rocks, limestones are 
usually observed in most engineering projects. These stones are very important both as building 
materials and as the bed in which the structure is built. For example, limestone is widely used in 
various engineering projects as a building stone and in the cement production industry, limestones 
are also seen as reservoir rocks in oil reservoirs; Therefore, it is important to study and investigate 
these types of stones and provide empirical relationships. Many studies have been conducted on 
the engineering characteristics of limestone in Iran, among which the following can be mentioned: 
(Safari Farrokhed et al., 1398; Rostgarnia et al., 1398; Moradi et al., 1396; Jafaripour et al., 
1393;Khalili et al., 1392) 
    A large part of Tabas county in the east of Iran is covered by Esfandiar formation (containing 
limestone) and many construction projects and mines have been built or are being built in this 
formation. Therefore, it is very important to investigate the mechanical properties of limestones 
of this formation in the region. For this purpose, in this study, using an artificial neural network, 
uniaxial compressive strength (in dry and saturated states) has been estimated using the physical 
characteristics of limestone samples prepared from this formation. The physical properties used 
include relative specific gravity (Gs), porosity (n), dry specific gravity (γdry), saturated specific 
gravity (γsat), and water absorption capacity (W.A). 
 
Geographical and geological situation of the region 
 
The studied area is located in the north of Tabas city. Tabas City is located in the eastern part 
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of the country and in the northwest of South Khorasan province (Figure 1). The Esfandiar 
Formation is one of the rock units of Central Iran and the extension of this formation is located 
in the northeast to the southeast of Tabas city in South Khorasan province which is located 
between the two blocks of Lut and Tabas. Figure 2 shows a view of the alternating layers of the 
Esfandiar formation, which is located around Goshen village, 25 km from Tabas city. The age 
of the Esfandiar Formation, which consists of many fossils, shows the Upper Jurassic based on 
index fossils such as ammonites, foraminifers, and other skeletal components. The Esfandiar 
formation consists of limestones with medium to thick beds, which were deposited on a wide 
and shallow platform with a length of more than 170 km and a width of between 30 ad 40 km 
and occupies most of the heights of the Shotori mountain range (Fursich et al., 2003). With the 
predominance of hot and dry weather conditions in the time interval from Calvin to Oxfordian 
in a large part of the north of the Tabas block, a large lime factory was activated on the platform 
of the Shotori mountains, which created the Esfandiar formation and a large part of the 
limestones of Qala Dokhtar. The formation of calcareous sediments in the late Oxfordian in 
parts of the beginning of the Kimmerian ends with the rise of the water level on a global scale 
(Hallam, 2001) and the sinking of the Esfandiar platform in the eastern part of the Shotori 
Mountains. The spread of the Esfandiar formation in the studied area is shown in Figure 1c. 
 

 
Figure 1. (a) Location of the study area in Iran, (b) Location of the study area in the province, (c) 
Geological map of the study area (adapted from the 1:250,000 map of Beshravieh) 
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Figure 2. A view of the alternating layers of the Esfandiar formation - the direction of the image is 
facing north 
 
Materials and methods 
 
In order to carry out this study, rock blocks were collected from 15 stations of Esfandiar 
limestone in the north of Tabas city. Figure 1 shows the location of the collected samples. After 
transferring the blocks from the studied area to the Engineering Geology Laboratory of the 
Ferdowsi University of Mashhad, the samples were prepared for mechanical tests (Figure 3). 
To conduct the test, first, cylindrical core samples with a diameter of 54 mm and a length-to-
diameter ratio of 2/1 were prepared from 15 rock blocks for uniaxial compressive strength 
testing. To perform the uniaxial compressive strength test according to the standard of the 
International Society of Rock Mechanics (ISRM, 2007), dry cylindrical samples were placed 
in an oven at a temperature of 105°C for 24 hours, and also to perform the test in a saturated 
state, the samples were saturated in a vacuum. Each sample was subjected to pressure by the 
compressive concrete breaker jack with a loading rate of about 0.5 MPa/min until the failure. 
By determining the maximum load on the samples during the test and calculating the effective 
cross-sectional area of each core, the uniaxial compressive strength of the samples was 
calculated (Figure 4). Then the necessary tests were performed to determine the physical 
characteristics of the samples. In order to calculate the physical properties, in the saturation 
state, the samples were saturated in the vacuum state. Then the weight of the saturated sample 
with dry surface and submerged weight was measured. Also, in order to perform tests in a dry 
condition, the samples were placed in an oven at a temperature of 105 degrees Celsius for 24 
hours. Finally, the dry weight of the sample was measured and the tests were carried out under 
normal laboratory conditions. Physical property tests include relative specific gravity (Gs), 
porosity (n), dry specific gravity (γdry), saturated specific gravity (γsat), water absorption 
(W.A) according to the standards of the International Society of Rock Mechanics (ISRM, 1981) 
were determined. Then, a multi-layer perceptron neural network was designed using Matlab 
software. Finally, using the designed artificial neural network, the uniaxial compressive 
strength was estimated in both dry and saturated states. Also, the uniaxial compressive strength 
was calculated from the multivariate linear regression using SPSS software based on the 
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physical characteristics of the rock sample, and then the significance level of the two neural 
networks and multivariate linear regression methods were compared. 
 

 
Figure 3. Preparing samples for testing 

 

 
Figure 4. Conducting the uniaxial compressive strength test on the samples prepared by the compressive 
jack machine 
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Physical characteristics 
 
In Tables 1 and 2, the average value of standard deviation, maximum and minimum, etc., of 
each of the physical properties in two sets of dry and saturated states of cylindrical samples are 
mentioned. Figures 5 and 6 show the frequency diagram and the normal curve of physical 
characteristics. Figure 5 shows a collection of 25 samples. The maximum abundance in the 
graph of dry specific gravity (γdry) is between 26.80 and 27 kN/m2. Relative specific gravity 
(Gs) has a normal curve and its average frequency is equal to 2.49. Porosity (n) has an average 
of 1.02%. The graph of water absorption (W.A) is not normal and its average is 0.38%. As can 
be seen in Figure 6, the physical properties of a total of 23 samples have been examined. The 
saturation specific gravity (γsat) has an average of 26.91 kN/m2 and its highest frequency is 
around 27 kN/m2, the relative specific gravity graph (Gs) has an average of 2.53 and the highest 
frequency is between 2.48 and 50. is 2. Porosity (n) has an average of 1.05%. The water 
absorption graph (W.A) has an average value of 0.39%. In Figure 6, relative specific gravity 
(Gs), porosity (n), saturation specific gravity (γsat), and water absorption capacity (W.A) do 
not have a normal curve. 

 
Table 1. Table of descriptive statistics of the results obtained from dry cylindrical samples 

 Gs 
γdry 

(KN/m3) 
n (%) W.A. (%) 

N 25 25 25 25 

Mean 2.49 26.86 1.02 0.38 

Std. Error of Mean 0.007 0.056 0.15 0.06 

Median 2.49 26.90 0.60 0.22 

Std. Deviation 0.03 0.28 0.76 0.29 

Variance 0.001 0.08 0.586 0.084 

Range 0.14 1.13 2.15 0.81 

Minimum 2.42 26.34 0.19 0.07 

Maximum 2.57 27.47 2.34 0.89 

 

 
Figure 5. Frequency diagram and normal curve of physical parameters in the dry state of ucs samples: 
(a) dry specific gravity (kn/m2), (b) relative specific gravity, (c) effective porosity (%), (d) percentage 
of water absorption (%) 
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Table 2. Descriptive statistics table of results obtained from cylindrical samples in saturated state 

 Gs n (%) sat γ
(KN/m3) 

W.A. (%) 

N 23 23 23 23 
Mean 2.53 1.054 26.91 0.39 

Std. Error of Mean 0.021 0.14 0.042 0.05 
Median 2.51 0.76 26.92 0.28 

Std. Deviation 0.104 0.705 0.204 0.26  
Variance 0.011 0.498 0.042 0.072 

Range 0.36 2.18 0.88 0.83 
Minimum 2.44 0.15 26.57 0.06 
Maximum 2.8 2.34 27.45 0.89 

 

 
Figure 6. Frequency chart and normal curve of physical parameters in the saturated state of ucs samples: 
(a) saturated specific gravity (kn/m2), (b) relative specific gravity, (c) effective porosity (%), (d) 
percentage of water absorption (%). 
 
Uniaxial compressive strength 
 
The uniaxial compressive strength was measured according to the standard (ISRM, 2007). In 
Figure 7, the results of 23 saturated samples and 25 dry samples are presented in MPa. In fact, 
the uniaxial compressive strength in the saturated state has decreased by 18.63% compared to 
the dry state According to Figure 7, the frequency of uniaxial compressive strength in the dry 
state is between 20 and 80 MPa, and in the saturated state, the frequency is between 10 and 70 
MPa. To classify uniaxial compressive strength values, the classification provided by the 
International Society of Rock Mechanics (Bieniawski, 1979) was used (Table 1), based on this 
classification of Esfandiar Formation rocks, on average, in dry and Saturation has a relatively 
low resistance and according to the classification of Dear & Miller (1966), the average 
resistance of samples in dry and saturated states are in the low category (Table 1).  
 
Artificial neural network 
 
Artificial neural networks are patterns for information processing that are made by imitating 
human neural networks. Each processor unit in artificial neural networks has an input and 
output characteristic. The output of each unit is determined according to its internal connections 
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to other units and the possibilities of external inputs. The overall performance of artificial 
networks is regulated by network topology, characteristics of individual neurons, learning 
method, and training data. There are two separate steps in artificial neural networks. The 
learning phase is in which the data is continuously entered into the network and the weights are 
updated until the desired answer is obtained. The second stage is the test stage, in which the 
network with final weights is used for new data. An artificial neuron in neural networks is a 
processing unit that associates the input data with the output variable (Akbari Poursalimi 
&Nikfar, 2017). This model has the ability to extract hidden relationships between inputs and 
outputs. This structure consists of a large number of processing elements or neurons that are 
used to solve complex problems. These networks, like human experience, learn from examples 
and are organized for specific applications such as pattern recognition or data classification 
during the learning process, and this is a simple description of an artificial neural network 
(Amanpour, 2013). There are different types of artificial neural network. One of the neural 
networks with a wide range of applications is called the multilayer perceptron artificial neural 
network. This type of artificial neural network consists of three layers: an input layer that is 
connected to multiple hidden layers, and this layer in turn is connected to the output layer or 
layers. Figure 8 shows the schematic structure of a multilayer artificial neural network. Neural 
networks with hidden layers have more ability. However, there are no rules to determine the 
optimal number of input layers or the number of hidden layers. The total inputs of each neuron 
after multiplying by the corresponding weights are applied to a function known as the stimulus 
function, and based on the specific needs of the problem that is to be solved by the neural 
network, it can be chosen as linear or non-linear. In fact, the stimulus function estimates the 
relationship between the input and output of nodes and the network (Tan et al., 2014). 

 

 
Figure 7. Frequency diagram and normal curve of uniaxial compressive strength (MPa): (a) in dry state, 
(b) in saturated state 
 

 
Figure 8. Schematic figure of the structure of a multilayer artificial neural network 
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Results and discussion 
 
Estimation of uniaxial compressive strength in a dry state 
 
In this research, in order to investigate the capability of artificial neural networks in estimating 
uniaxial compressive strength, a multilayer perceptron neural network was used. Figure 9 
shows an example of the artificial neural network structure in the dry state, where relative 
specific gravity (Gs), porosity (n), dry specific gravity (γdry), water absorption ability (W.A) 
are input to the neural network and the first hidden layer has 4 neurons. The second layer has 7 
neurons and the third layer has an output as a linear function. The second hidden layer in the 
form of a sigmoid tangent function has brought the network to the lowest error, and the third 
layer is in the form of a linear function. 
    Different modes of training, testing, and validation in two dry and saturated modes are shown 
in Figure 10-a. In this network, during the twelfth step of the model in the dry state, the best 
point was determined where the mean square error (MSE) reached its minimum and at this 
point, the network provided the best model. The desired network model in Figure 10-b shows 
the performance of the network during training, which is in 18 cycles, and how the neural 
network training process proceeds from the input data. 
    In Figure 11, using regression relationships using Matlab software, the correlation 
coefficient of the values for test data, validation, test, and in general for the neural network in 
a dry state has been calculated and a 1:1 line graph has been drawn. 
 

 
Figure 9. The general structure of multilayer perceptron artificial neural network in this research in dry 
state 
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Figure 10. The results of ucs model in dry state (a) network training steps (b) artificial neural network 
error rate in uniaxial compressive strength estimation and the best point in model selection 
 

 
Figure 11. Correlation between the input and output values of the regression equation measured ucs 
with ucs calculated from the neural network in dry state 
 
    In this figure, the value of R in the test mode is equal to 0.67. For validation 0.96, for test 
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0.50, and in general, for the mentioned neural network model, its coefficient was equal to 
0.64%, and the high value of the correlation coefficient in the validation state indicates the 
appropriate correlation of the model and its acceptable validity. 
    Figure 11 shows that 17 samples have been considered for training, 4 samples for 
performance, and 3 samples for testing. In fact, 70% of the samples have been used for training 
15% for performance, and another 15% for testing in a dry state. 
If the amount of error between the distribution points with the regression line reaches its 
minimum, the error histogram of the neural network model in the dry state (Figure 12), the 
amount of error caused by testing, testing and validation has the highest distribution on the zero 
axis, which shows that this model is suitable. 
 
Estimation of uniaxial compressive strength in a saturated state 
 
The tests of physical properties include solid specific gravity (Gs), porosity (n), saturated 
specific gravity (γsat), water absorption ability (W.A) (Figure 13) as input layers of the neural 
network, and uniaxial compressive strength in the saturated state (ucs) as the output is the 
structure. This network has three layers, the two hidden layers of which each has 6 neurons with 
a sigmoid tangent activation function. The activator function is used for these hidden layers, 
and the third layer of this network is its output, which has a single layer with a linear activator 
function. 
    Figure 14-a shows the stages of network training in 16 periods. Figure 15-b shows that during 
the tenth step, the mean square error (MSE) reached its minimum and at this point, the network 
presented the best model. In this figure, three network diagrams are shown during training, 
evaluation, and testing. 
    Using the regression relationship, the correlation coefficient of the values for the test data, 
validation, test and in general for the neural network in the saturation state has been calculated 
and the 1:1 line graph has been drawn (Figure 15). In this Figure, the value of R in the test mode 
is equal to 0.70. For validation 0.96, for test 0.99 and in general for the mentioned neural 
network model, its coefficient was equal to 0.78%, which indicates the very good correlation 
of the model and the high value of R in validation shows the high validity of the model. 

 

 
Figure 12. Error histogram of neural network model for estimating uniaxial compressive strength in dry 
state 
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Figure 13. The general structure of multilayer perceptron artificial neural network in this research in 
saturation mode 
 

 
Figure 14. The results of ucs model in saturation (a) network training steps (b) the amount of artificial 
neural network error in estimating uniaxial compressive strength and the best point in selecting the 
model in saturation 
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Figure 15. Correlation between the input and output values of the measured ucs regression equation 
with the ucs calculated from the neural network in saturation mode 
 
    The number of samples in saturation state was 23, of which 16 samples were used for 
training, 3 samples for performance and 4 samples for testing. If the amount of error between 
the distribution points and the regression line reaches its minimum, the appropriate model is 
determined. In the error histogram of the neural network model in dry state (Figure 16), the 
amount of error caused by testing, testing and validation has the highest distribution on the zero 
axis, which shows that the model has very little error. 
 
Comparing the results of artificial neural network with the results of multivariate 
regression 
 
In this section, the results of artificial neural network have been compared with the results of 
multivariate regression. First, in Table 4, the value of R2 and the equation obtained from the 
multivariate regression relationships using the physical characteristics of the samples are 
shown. Then, using the box plot diagram, the average value of the measured uniaxial 
compressive strength, the estimated uniaxial compressive strength using neural network and 
the estimated uniaxial compressive strength using multivariate regression have been compared. 
Also, a comparison has been made between the R value of two multivariate regression methods 
and an artificial neural network in dry and saturated conditions. 
    One of the methods of showing the accuracy of the results of experiments, simulators and 
statistical relationships is the use of confidence interval charts. A box plot is a standard way to 
display the distribution of data based on five numbers, minimum, first quartile, median, third 
quartile, and maximum. As seen in figures 17 and 18, the uniaxial compressive strength 
estimated using multivariate regression data has more outliers than the values estimated using 
artificial neural network.  
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Figure 16. Error histogram of neural network model for estimating uniaxial compressive strength in 
saturated state 
 

 
Figure 17. Comparison of the value of uniaxial compressive strength in three methods: measured, 
artificial neural network, predicted by multivariate regression using box plot in dry state 
 

 
Figure 18. Comparison of the value of uniaxial compressive strength in three methods: measured, 
artificial neural network, predicted by multivariate regression using box plot in saturation state 



Geopersia 2024, 14(1): 45-62  59 

    It can also be seen that Area_mean in figures 17 and 18 has more variation for UCS obtained 
from neural network. We also get information about data compression or symmetry from these 
two forms.  
    Based on these two ways of using artificial neural network, more reliable results are obtained. 
In these graphs, the standard deviation of each variable is drawn as lines above and below each 
graph, based on which it is possible to judge whether the average of groups or variables is equal 
or different, and to measure the range of each parameter, which in Figure 17 means the dry state 
of the average. The samples in the three methods are almost close to each other. In Figure 19, 
we have compared the value of R in two methods of multivariate regression and artificial neural 
network, which shows that in both dry and saturated conditions, the value obtained from 
artificial neural network has obtained more acceptable results. 

 
Table 3. Classification of virgin rock based on uniaxial compressive strength in megapascals (Deere 
and Miller, 1966; Bieniawski, 1979) 

Bieniawski Noun Deere and Miller Noun 

1-5 Very low 28> Very low 

5-25 Low 28-56 Low 

25-50 Relatively low 56-112 Middle 

50-100 Middle 112-224 High 

100-250 High 224< Very high 

250< Very high   

 
Table 4. Statistics of the relationship between uniaxial compressive strength in two dry and saturated 
states, with physical properties 
 
 
 
 
 

 
Figure 19. Comparison of R value obtained from two methods of multivariate regression and artificial 
neural network in two states of dry and saturated sample using histogram chart 
 
Conclusions 
 
In this research, the obtained experimental relationships were used to estimate the uniaxial 

(R2) Regression equation 

0.413 UCSୢ୰୷ ൌ 16.44	Gs ൅ 19.46	γୢ୰୷ െ 11.72	Log	W. A െ 0.99	Log	n െ 525.37 

0.480 UCSୱୟ୲ ൌ 82.02	Gs ൅ 210465.7	γୱୟ୲ െ 1.80	Log	W. A െ 6.03	Log	n െ 210665.2 
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compressive strength of Esfandiar formation limestones using physical characteristics. For this 
purpose, physical properties including solid specific gravity (Gs), porosity (n), dry specific 
gravity (γdry), saturated specific gravity (γsat), water absorption ability (W.A) on 25 dry 
cylindrical core samples and 23 core samples The saturation of the limestones of this formation 
was evaluated and the range of resistance obtained in the dry state is between 20 and 80 MPa 
and in the saturated state it is between 10 and 70 MPa. Then, using perceptron multilayer neural 
network, the effect of these characteristics on uniaxial compressive strength was evaluated in 
both dry and saturated states.. The coefficient of determination in training mode, performance, 
test mode and in general mode in the dry state of the sample is equal to 0.67, 0.96, 0.50, 0.64 
respectively, and for saturated mode, it is equal to 0.70 respectively, 0.90, 0.99, 0.78. These 
numbers show that the performance of the neural network has high reliability. The evaluation 
of mean square error and coefficient of determination of this research showed that the 
estimation of uniaxial compressive strength using this model is very appropriate. The 
comparison of the value of uniaxial compressive strength in the two methods of perceptron 
multilayer neural network and multivariate regression with the experimentally measured value 
shows that the value of uniaxial compressive strength obtained in the neural network method 
in the Esfandiar Formation limestone sample is closer to the value measured in the laboratory 
than the multivariate regression. 
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