Accepted Manuscript

Selection of optimum fractal model for detection of stream sediments anomalies

Shiva Shahsavar, Ali Reza Jafari Rad, Peyman Afzal, Nima Nezafati

DOI: 10.22059/GEOPE.2020.293961.648516

Receive Date: 12 December 2019
Revise Date: 08 March 2020
Accept Date: 06 April 2020
Selection of optimum fractal model for detection of stream sediments anomalies

Shiva Shahsavar1, Ali Reza Jafari Rad1*, Peyman Afzal2, Nima Nezafati1
1 Department of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Petroleum and Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
*Corresponding author, e–mail: alirad@yahoo.com

Abstract
The main purpose of this research is a comparative study among four different fractal models including Concentration-Perimeter/Area (C-P/A), Concentration-Number (C-N), Concentration-Area (C-A) and Concentration-Perimeter (C-P) for delineation of stream sediments Au anomalies based on catchment basins in Aghkand region, NW Iran. In this study, a total of 920 stream sediment samples were utilized to determine the geochemical anomalies of Au using the fractal models for selection of optimum model. As a result, the Au anomalies were correlated with geological units located in the western and SW parts of the region that mainly consist of andesite rocks and tuffs. To certify this, 78 litho-geochemical sets of data were utilized to validate the C–P/A, C–N, C–A and C–P fractal models for Au by logratio matrix. The overall accuracy rates are 0.97, 0.96, 0.95 and 0.95 for the C–P/A, C–N, C–A, C–P fractal models, respectively. It showed that the C–P/A model was the optimum fractal model in the study region.

Keywords: Fractal Models, Stream Sediments, Aghkand.

Introduction
Separating the geochemical anomalies from their background is among the major goals for recognition and explanation of different ore formation processes (Carranza, 2008; Pirajno, 2009). The selection of an optimum method for anomalies’ detection is vital for different cases. Conventional methods consist of statistical methods that have been being used for decades and it was assumed that such methods that have been used for recognition of anomalies were the only applicable cases where geochemical data followed a normal or log-normal distribution and neglected its spatial variability (Davis, 2002). Furthermore, conventional statistical methods contain disadvantages such as normalization of raw data. As a result, conventional methods were gradually replaced by modern methods like fractal/multi-fractal methods (Agterberg, 1995; Cheng et al., 2000; Shen & Zhao, 2002; Afzal et al., 2010). Fractal/multi-fractal methods were initially proposed by Cheng et al. (1994) and has been applied in geochemical exploration since 1990s (e.g., Cheng et al., 1994, 1995; Sim et al., 1999; Li et al., 2003; Carranza, 2009; Afzal et al., 2011, 2012; Sadeghi et al., 2015; Zuo et al., 2015; Chen & Cheng, 2016; Parsa et al., 2016, 2017; Ghezelbash et al., 2019a).

Some practical fractal models for geochemical exploration include Number-Size (N-S; Mandelbrot, 1983), Concentration-Perimeter/Area (C-P/A; Bölviken et al., 1992), Concentration-Area (C-A; Cheng et al., 1994), Perimeter-Area (P-A; Cheng, 1995), Spectrum-Area (S-A; Cheng et al., 2000), Concentration-Distance (C-D; Li et al., 2003), Concentration-Volume (C-V; Afzal et al., 2011), Spectrum-Volume (S-V; Afzal et al., 2012) and Concentration-Number (C-N; Sadeghi et al., 2012; Afzal et al., 2016).

Geochemical exploration based on stream sediment data is an efficient method for identification of anomalous areas (Carranza, 2010; Yousefi et al., 2012, 2013). Geochemical landscapes have been modeled from point data of stream sediment chemical compositions by creating maps with point symbols contours (Govett, 1983), sample catchment basins (Bonham-Carter, 1994; Bonham-Carter & Goodfellow, 1984, 1986; Carranza, 2010; Carranza & Hale, 1997; Moon, 1999; Spadoni et al., 2004), stream orders (Carranza, 2004), and extended sample catchment basins (Spadoni, 2006). In this research, catchment basins of stream sediment samples were developed through digital elevation model (DEM) and were classified after applying the C-P/A, C-N, C-A and C-P fractal models (Ghezelbash et al., 2019b). Following that, the results were correlated with geological units. Based on logratio matrix and lithogeochemical samples, the results derived by these models were compared and the appropriate method for delineation of the Au geochemical anomalies in the Aghkand region, NW Iran was selected.
Methodology

Concentration-Area (C-A) fractal model
Cheng et al. (1994) developed the C-A fractal model for the definition of geochemical anomalies from the background. The C-A fractal model has the following general form:

\[A(\rho \leq \rho_0) \propto \rho^{-a_1}; A(\rho \leq \rho_1) \propto \rho^{-a_2} \]

(1)

where \(A(\rho) \) denotes the areas that have the concentration values smaller or greater than the contour value \(\rho \), \(\nu \) stands for the threshold; \(a_1 \) and \(a_2 \) are the characteristic exponents that represent fractal dimension. Threshold values in the model represent the boundaries between different geochemical anomalies and zones (Afzal et al., 2010, 2014, 2016; Heidari et al., 2013, Ghezelbash et al., 2019).

Concentration-Perimeter (C-P) fractal model
This model was proposed by Cheng (1995) and has been utilized to indicate the geochemical anomalies from the background with the following form:

\[P(\rho \geq \rho) \propto F \rho^\beta \]

(2)

where \(\rho \) and \(P(\rho \geq \rho) \) represent elemental concentration and the perimeter that has concentration values greater than or equal to \(\rho \), respectively. \(F \) and \(\beta \) are the constant and the fractal dimension of the distribution of elemental concentrations, respectively (Afzal et al., 2016).

Concentration-number (C-N) fractal model
Sadeghi et al. (2012) proposed the C-N fractal model in accordance with Number-Size (N-S) fractal model which was proposed by Mandelbrot (1983). It makes a reverse relation between each concentration and cumulative frequency (Mandelbrot, 1983; Sadeghi et al., 2012; Afzal et al., 2016). This model has the common form as follow:

\[N(\geq C) \propto F \rho^{-\bar{\beta}} \]

(3)

Where \(N(\geq \rho) \) shows the elemental concentration and the cumulative number of samples which have concentration values greater than \(\rho \) value. \(F \) is the constant and \(\bar{\beta} \) is the fractal dimension of the distribution for elemental concentrations. This model uses all initial data without changing the raw data (Deng et al., 2010; Afzal et al., 2016).

Geological Setting
The Agkhand region is located in the SE of Eastern Azerbaijan province, NW Iran, with an approximate extent of 2920 km². It is situated at the intersection of western Alborz, central Iran structural zones and partly Urumieh-Dokhtar magmatic belt (UDMB; Fig. 1). The UDMB hosts many porphyry, epithermal and related types of ore deposits (Atapour & Aftabi, 2007; Shafiei et al., 2009; Dargahi et al., 2010; Asadi et al., 2014; Zarasvandi et al., 2015). However, there are various kinds of gold mineralization including intrusion-related, Au-rich VMS, Carlin-like, epithermal and orogenic, especially in NW Iran (Maghsoudi et al., 2005; Aliyari et al., 2009; Tajeddin, 2011; Heidari et al., 2013; Makovicky et al., 2013). The continental collision between Iranian microcontinent and the Afro-Arabian continent during closure of the Tethys Ocean in the Late Cretaceous led to the development of a volcanic arc in northwestern Iran (Mohajjel & Fergusson, 2000; Babaie et al., 2001; Karimzadeh-Somarin, 2005; Karimzadeh-Somarin & Lentz, 2008). Then, the subduction-related granitic intrusions were emplaced into the volcanic arc during Cenozoic, especially Oligocene and Miocene, Cu–Mo–Au porphyry and epithermal gold mineralization were formed (Hezarkhani & Williams-Jones 1998; Karimzadeh-Somarin & Lentz, 2008). The existence of hydrothermal gold mineralization in some of volcanic-dominated sequences in northwestern Iran (Karimzadeh-Somarin & Lentz, 2008) illustrates the abundance of such hydrothermal systems (Ellis, 1979; Karimzadeh-Somarin & Lentz, 2008).

The oldest rocks in the region belong to Precambrian and Paleozoic which exist in the western part of the region. Precambrian rock types are composed of various metamorphic rocks including metapelites, metabasites, calc-silicates and meta-ultramafic rocks. Paleozoic rock units consist of metamorphic ophiolitic rocks, gneiss, amphibolite, shale and sandstone with interbedded dolomitic limestone. They were metamorphosed to the green schist and granulite facies. The Mesozoic rocks are mostly related to Triassic and Jurassic are located in the western part of the region including dolomitic limestone, siltstone, sandstone, claystone, shale and marl (Fig. 1).

There also exist various Oligocene volcano-plutonic rocks including andesite, trachy-andesite, granodiorite, and granite. There are also some Eocene sedimentary rocks consist of marl, siltstone, limestone, and sandstone (Fig. 1). The region’s majority rock types consist of Eocene volcanic and volcano-sedimentary rocks including ignimbrite and tuff. Many researchers have come to the conclusion that these masses are the granitoids of type-I. There also exist many metallic deposits and
occurrences that contain Cu, Au, Pb and Zn. Alluvial terraces, river deposits, low gravel fans and travertine are seen as Quaternary units in the region (Karimzadeh-Somarin, 2006).

There are several metallic and related industrial mineral occurrences or deposits such as copper, gold, barite, iron and kaolinite.

Figure 1. Location of study region in Iran’s structural map (based on Sahandy 2006), and simplified geological map with stream sediment location.
Baycheh Baq polymetallic deposit is located in the SE part of the study region which is within the volcano-plutonic rocks of the UDMB. There are Au-Cu-Pb-Zn-Ag mineralization within silicic, argillic and propylitic alteration zones. Moreover, volcanosedimentary and volcanic rocks host metallic mineralization, especially Au (Lotfi & Karimi, 2004). Iron oxides and argillic alteration zones extended in the study region, especially in the western and southwestern parts of Aghkand region. Furthermore, silicification occurs in the region, specifically in the western and SW parts near to Zarshuran Carlin-like deposit. Evidence show that Au mineralization can be epithermal or carlin-like types.

Geochemical data and elemental correlations
In the present study, 920 stream sediment samples along with 78 lithogeochemical samples as a validation were collected and then analyzed via ICP-MS in the laboratory of the Geological Survey of Iran (GIS) for 44 elements. The detection limit for Au is 1 ppb which is important for the correction of censored data. Assay quality assurance (QA) and quality control (QC) were carried out based on 15 duplicate samples. Based on T-student and Fisher tests, there were no meaningful differences and mistakes.

Discussion
The location map for the geochemical samples is represented in Fig. 1. As statistical parameters indicate, Au mean value is 1.31 ppb and the distribution of Au is not normal (Table 1 and Fig. 2). If Au median is assumed equal to the threshold values, then the achieved elemental threshold value is 1.3 ppb for Au, as illustrated in (Table 1). The data was transformed by Ln transformation and its histogram is near to normal distribution (Fig. 3).

Threshold values (break points) for separating geochemical populations were obtained from C-P/A, C-N, C-A and C-P log-log plots which indicate geochemical differences.

<table>
<thead>
<tr>
<th>Statistical parameter</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.31</td>
</tr>
<tr>
<td>Median</td>
<td>1.3</td>
</tr>
<tr>
<td>SD</td>
<td>1.30</td>
</tr>
<tr>
<td>Maximum</td>
<td>7.85</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.0</td>
</tr>
</tbody>
</table>

SD: standard deviation

Table 2. Au thresholds based on the C–P/A, C–N, C–A, C–P.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Low-intensity Threshold Au (ppb)</th>
<th>High-intensity Threshold Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-P/A</td>
<td>0.001</td>
<td>25.1</td>
</tr>
<tr>
<td>C-N</td>
<td>1.58</td>
<td>6.91</td>
</tr>
<tr>
<td>C-A</td>
<td>0.001</td>
<td>39.8</td>
</tr>
<tr>
<td>C-P</td>
<td>0.003</td>
<td>39.8</td>
</tr>
</tbody>
</table>

According to log-log plots, five geochemical populations can be considered for Au which are obtained by the C-N, C-A and C-P, as can be seen in Fig. 4. The C-P/A log-log plot shows a different result for six populations for Au. Furthermore, the results derived via the C-A and C-P fractal models are analogous (Table 2 and Fig. 5).

The geochemical maps for each method were generated using sample catchment basin by ArcGIS 9.3 (Fig. 5). The sample catchment basins of stream sediments were produced from Digital Elevation Model (DEM). Then C-P/A, C-N, C-A, and C-P fractal models were evaluated.

As it is illustrated in Fig. 5, main anomalies for Au happens in the western and southwestern parts of the study region for all fractal models and high
intensive anomalies contain Au values >7.9 ppb, >5.2 ppb, >4 ppb and >4 ppb based on the C-P/A, C-N, C-A and C-P, respectively. In addition, the maps of C-A and C-P fractal models are very similar to high intensive anomalies. The maps derived via the C-P/A and C-N indicate different Au anomalies, but there are good correlations between these fractal models. Based on the Au maps, main Au anomalies exist in the western and SW parts of this region (Fig. 5). These anomalies are associated with andesite rocks and tuffs.

Correlation between fractal modeling with lithogeochemical data

The Au anomalies obtained by the fractal models were correlated with lithogeochemical samples using logratio matrix. Carranza (2011) proposed a method for the calculation of spatial correlations between two mathematical models. An intersection operation between major Au anomalies achieved by the various fractal models and concentrated lithogeochemical data was carried out to calculate voxels with respect to each of the overlap zones’ four classes as presented in Table 3. Based on the gained numbers of voxels, the overall accuracy (OA), Type I error (T1E) and Type II error (T2E) of geochemical data corresponding to the C–P/A, C–N, C–A and C–P fractal models were calculated.

First, lithogeochemical data were classified using the C-N fractal model. Its log-log plot shows that there are six populations for Au (Fig. 6). Moreover, high intensive lithogeochemical anomalies commence from 446 ppb for Au.

This lithogeochemical samples and logratio matrix can be used for validation of high value of stream sediments anomalies of Au obtained by the C–P/A, C–N, C–A and C–P fractal models.

<table>
<thead>
<tr>
<th>High Intensive Anomalies Obtained by the C–P/A, C–N, C–A, C–P Fractal Models</th>
<th>High Intensive Lithogeochemical Anomalies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Anomaly</td>
<td>Outside Anomaly</td>
</tr>
<tr>
<td>Inside Anomaly</td>
<td>True positive (A)</td>
</tr>
<tr>
<td>Outside Anomaly</td>
<td>False negative (C)</td>
</tr>
</tbody>
</table>

Type I error = \(\frac{C}{A+C} \)
Type II error = \(\frac{D}{B+D} \)
Overall accuracy = \(\frac{A+D}{A+B+C+D} \)

Figure 4. Log-log plots for C-P/A, C-N, C-A and C-P fractal models.
The results represented that the OAs are 0.97, 0.96, 0.95 and 0.95, respectively (Table 4) and the C–P/A model is the most effective in separating Au anomalies in this region.

Table 4. Overall accuracy (OA) based on the main stream sediment geochemical anomalies obtained through C–P/A, C–N, C–A, C–P fractal models and Au concentrated lithogeochemical samples.

<table>
<thead>
<tr>
<th>High Intensive Anomalies Obtained by the C–P/A Fractal Model</th>
<th>High Intensive Lithogeochemical Anomalies</th>
<th>Inside Anomaly</th>
<th>Outside Anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Anomaly</td>
<td>(A)=1</td>
<td>(A)=1</td>
<td>(B)=43</td>
</tr>
<tr>
<td>Outside Anomaly</td>
<td>(C)=2</td>
<td>(C)=2</td>
<td>(D)=2189</td>
</tr>
<tr>
<td>Type I error = 0.66</td>
<td>Type II error = 0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall accuracy = 0.97</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High Intensive Anomalies Obtained by the C–N Fractal Model</th>
<th>High Intensive Lithogeochemical Anomalies</th>
<th>Inside Anomaly</th>
<th>Outside Anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Anomaly</td>
<td>(A)=1</td>
<td>(A)=1</td>
<td>(B)=71</td>
</tr>
<tr>
<td>Outside Anomaly</td>
<td>(C)=2</td>
<td>(C)=2</td>
<td>(D)=2134</td>
</tr>
<tr>
<td>Type I error = 0.66</td>
<td>Type II error = 0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall accuracy = 0.95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High Intensive Anomalies Obtained by the C–P Fractal Model</th>
<th>High Intensive Lithogeochemical Anomalies</th>
<th>Inside Anomaly</th>
<th>Outside Anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Anomaly</td>
<td>(A)=1</td>
<td>(A)=1</td>
<td>(B)=71</td>
</tr>
<tr>
<td>Outside Anomaly</td>
<td>(C)=2</td>
<td>(C)=2</td>
<td>(D)=2134</td>
</tr>
<tr>
<td>Type I error = 0.66</td>
<td>Type II error = 0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall accuracy = 0.95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In addition, the selected fractal model was evaluated by polymetallic occurrence index (Fig. 7). The results indicated that the OAs is 0.81 (Table 5).

Finally, the main Au anomaly in the western and SW parts of this region was validated by field observations and analysis of collected samples from silicic veins (Fig. 8). There are two collected samples which contain 1.1 ppm and 0.45 ppm. It shows that the main anomaly was determined with high accuracy.

Table 5. Overall accuracy (OA) based on the main stream sediment geochemical anomalies obtained through C–P/A fractal model and polymetallic occurrence index.

<table>
<thead>
<tr>
<th>High intensive Anomalies Obtained by the C–N Fractal Model</th>
<th>Existing polymetallic occurrence index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Anomaly</td>
<td>Outside Anomaly</td>
</tr>
<tr>
<td>(A)=7</td>
<td>(B)=2</td>
</tr>
<tr>
<td>Inside Anomaly</td>
<td>(C)=159</td>
</tr>
<tr>
<td>(D)=691</td>
<td></td>
</tr>
</tbody>
</table>

Type I error = 0.95 Type II error = 0.99

Overall accuracy = 0.81

Conclusion

Results obtained by Comparison of the C–P/A, C–N, C–A and C–P fractal models show that the C–P/A model is suitable for the detection of stream sediment anomalies for Au in the Aghkand region. Moreover, the C-A and C-P models are very analogous. The C–P/A fractal model is the proper method with the highest the equal to 0.97.

Figure 7. Evaluation map of the distribution of Au by using polymetallic occurrence index.

Figure 8. Field observations from silicic veins (a and b).
Furthermore, high intensive Au anomalies were located in the western and southwestern parts of the region. Ultimately, in order to check the anomalies with a geological map, the situations of stream sediment samples with the catchment basins were studied to find the proper host rocks for gold mineralization. Correspondence between these rock types and the main anomalies indicates that concentration of Au were located in the western and southwestern parts of the study region and were hosted by andesite rocks and tuffs.

References
Ghezelbash, R., Maghsoudi, A., Daviran, M., Yilmaz, H., 2019. Incorporation of principal component analysis,
geostatistical interpolation approaches and frequency-space-based models for portraying the Cu-Au geochemical prospects in the Feizabad district, NW Iran. Geochemistry, 79: 323–336.

