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Abstract 
The current study proposes a three-step approach for pore throat size characterization of these reservoirs, by integrating core data, well 
logs and 3D seismic volume. In this respect, first the pore throats size was calculated using Pittman and Winland models based on 
routine core analysis data and calibration the results with the laboratory-derived capillary pressure curves. In the second step, the pore 
throat size as a continuous log was calculated using petrophysical data for each studied well. Finally, the calculated pore throat size log 
was tied to 3D seismic data at well locations. The results show that seismic attributes including acoustic impedance, amplitude 
envelope, filter 15/20-25/30 and derivative instantaneous amplitude are the best predictor set for converting the 3D seismic volume 
into a pore size cube by a probabilistic neural network mode. The methodology illustrated in this study, was employed on Ilam 
carbonate reservoir in one of the southwestern oilfields of Iran. The findings demonstrate that seismic data in combination with core 
and well log data could be considered as an effective tool for spatial modeling and characterization of pore throat size in carbonate 
reservoirs. 
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Introduction 
Estimation of production performance in a 
heterogeneous reservoir is not possible without an 
accurate calculation of physical properties of 
reservoir rocks. Permeability that is a measure of the 
rock capability for transmission of fluids (Tiab & 
Donaldson, 2015) has an important effect on 
reservoir performance. In addition, textural 
characteristics of reservoir rocks such as grain size 
and sorting have significant control on permeability, 
porosity, enhancement oil recovery and capability of 
maintaining the hydrocarbon column by cap rock 
(Rezaee et al., 2006; Buryakovsky et al., 2012; Tiab 
& Donaldson, 2015). In the process of water 
replacement by oil in a water-wet system, first the 
displacement process occurs in a small segment that 
reduces the oil continuity, and leaves bobbles of 
residual oil in pore throat size; so, residual oil volume 
depends on pore and pore throat size (Wardlaw et 
al., 1987; Scott & Barker, 2003; Nelson, 2009; 
Rezaee et al., 2006). Therefore, study of physical 
properties of reservoir rocks through analysis of 
core data and petrophysical well logs is essential to 
reach a comprehensive understanding of reservoir 
production behavior in the field. Also, seismic data 
are being successfully applied to predict the 
reservoir rock properties (Russel, 2004; Shahraeeni 
et al., 2012; Yarmohammadi et al., 2014; Grana & 

Rossa, 2010; Bosch et al., 2010; Bornard et al., 
2005; Dai et al., 2004; Dorrington & Link, 2004; 
Dolberg et al., 2000).This study with focus on a 
carbonate reservoir from one of the fields of 
southwestern Iran pursues the following targets. 
a) Investigation the pore throat size of the reservoir 
using core analysis data, 
b) Determination of the optimized pore throat size 
relationship through analysis of Washburn, Pittman 
and Winland equations, 
 c) Prediction of permeability through analysis of 
petrophysical data, and generating R35 as a 
continuous log in the studied wells, and  
d) Extraction a cube of pore throat size (PTS) from 
3D seismic data. 
 
Geological setting 
The studied field is located in the northern part of 
the Abadan Plain, 15-30 meters above sea level, in 
southwest of Khuzestan province, and about 50 km 
west of Ahvaz industrial city, southwestern Iran 
(Figure 1Error! Reference source not found.). 
The hydrocarbon type in the field is heavy oil (23 
API). The field has an anticlinal structure with NW-
SW azimuthal trend. The structure has a very low 
angle flank, with an area of approximately 65Km2 

and small closure of about 75m on the Sarvak 
horizon.  
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Figure 1. Location map of the studied field in SW of Iran (National Iranian Oil Company Report, 2009). 

 
3D seismic data of the study area were acquired by 
Oil Exploration Operations Company (OEOC) in 
2004. The main task of the 3D seismic survey was 
to specify the structural features of the reservoirs. 
As with the other structures in the Abadan Plain, 
the studied structure consists of several Cretaceous 
reservoirs including Ilam, Sarvak, Gadvan and 
Fahliyan formations (Figure 2). The target 
reservoir, upper Cretaceous Ilam Formation, 
consists of dark to light gray clay, limestone and 
shale (Mehrabi et al., 2014). This formation in this 
area is divided into five major zones including Ilam 
Zone, Ilam Upper-a, Ilam Upper-b, Ilam Main, and 
Ilam Poor. Among them, Ilam Upper-a and Ilam 
Main are considered as main reservoir zones. But, 
the other zones do not have good reservoir quality.  
 
Methodology 
In this study, core analysis data (42 SCAL and 213 
CCAL) and conventional well logs from 3 wells of 
the studied field as well as 3D seismic data were 
integrated and used for pore throat size evaluation 
by applying the intelligent systems. Core intervals 
for the studied wells include Well #2 (2912-
3016m), Well #3 (2930-3119m) and Well #5 (2972-

3158m). A set of pre-calculations, environmental 
corrections and depth matching were applied on 
raw well log data to make them ready for 
interpretation. First, pore throat size was calculated 
based on empirical equations, and the results were 
compared with core analysis data. Afterward, it was 
tried to estimate permeability and pore throat size 
from petrophysical data by considering core results 
as reference. Finally, formulations were made 
between seismic attributes and pore throat radius 
using intelligent models to generate a 3D cube of 
pore throat size over the studied carbonate 
reservoir. 
 
Estimation and evaluation of pore throat size based 
on empirical equations 
Washburn Equation (Washburn, 1921) 
Capillary pressure curves are one of the main 
sources for calculation of pore and pore throat 
radius distribution. Washburn (1921) found the 
relationship between capillary pressure and pore 
throat size in the form of Eq. (1). 

            Eq. (1) 
Where r is pore throat size (micron), : interfacial 
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tension (dyne/cm), : wetting phase angle (degree), 
Pc: capillary pressure (psi). 
Capillary pressure data that are obtained from 
mercury injection test, porous diaphragm, dynamic 
method and centrifuge test, are represented as a plot 
of Pc versus non-wetting phase saturation. These 
data are measured usually with non-wetting fluids 
in laboratory condition. Accordingly, it is necessary 
to convert them from laboratory to reservoir 
conditions (Eq. 2 to Eq. 4). 

        Eq. (2)  

        Eq. (3) 
Since r=r 

    Eq. (4) 
Where subscripts “res” and “lab” represent 
Washburn parameters (Eq. 1) in reservoir and 
laboratory conditions, respectively. 

 

 
Figure 2. Cretaceous to Tertiary stratigraphy column of the study area (modified from Motiei 1993, Alavi 2004, and AbdollahieFard et 
al. 2006). 
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Winland Equation (Kolodzie, 1980): 
Winland used the mercury capillary pressure curves 
for creating an empirical equation between porosity, 
permeability and pore throat size in reservoir rocks 
of the Spindale field. Winland equation uses 
capillary pressure data for real geometry of the pore 
throat size at 35% of non-wetting phase saturation 
(Eq. 5). 
Log R35 = 0.732 + 0.588*log (K) – 0.864*log (φ)
                 Eq. (5) 
Where K is permeability (md),  is porosity (%), 
and R35 is pore throat size (micron) at 35% of non-
wetting phase saturation. 
According to the cross plot of Figure 3, there is a 
high correlation coefficient (0.83) between 
Washburn and Winland pore throat size (R35) in 
the studied reservoir. 
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Figure 3. Correlation coefficient (R=0.83) between R35 from 
Washburn and Winland equations.  
 
Pittman Equation (Pittman, 1992) 
Winland equation in corrected samples for gas 
effect was tested by Pittman (1992) in the 
Ordovician clastic reservoirs. The studied sandstone 
samples were different in composition, texture and 
structure. Pittman equations for pore throat size 
determination based on different percentages of 
mercury saturation are listed in Eq. 6 to Eq. 19. 
Log (R10) = 0.459 + 0.500*log (K) – 0.385*log (φ)
                 Eq. (6) 
Log (R15) = 0.333 + 0.509*log (K) – 0.344*log (φ)
                 Eq. (7) 
Log (R20) = 0.218 + 0.519*log (K) – 0.303*log (φ)
                 Eq. (8) 
Log (R25) = 0.204 + 0.531*log (K) – 0.350*log (φ)
                        Eq. (9) 
Log (R30) = 0.215 + 0.547*log (K) – 0.420*log (φ)
                Eq. (10) 
Log (R35) = 0.255 + 0.565*log (K) – 0.523*log (φ)

                Eq. (11) 
Log (R40) = 0.360 + 0.582*log (K) – 0.680*log (φ)
                Eq. (12) 
Log (R45) = 0.609 + 0.608*log (K) – 0.974*log (φ)
                Eq. (13) 
Log (R50) = 0.778 + 0.626*log (K) – 1.205*log (φ)
                Eq. (14) 
Log (R55) = 0.948 + 0.632*log (K) – 1.426*log (φ)
                Eq. (15) 
Log (R60) = 1.096 + 0.648*log (K) – 1.666*log (φ)
                Eq. (16) 
Log (R65) = 1.372 + 0.643*log (K) – 1.979*log (φ)
                Eq. (17) 
Log (R70) = 1.664 + 0.627*log (K) – 2.314*log (φ) 
                Eq. (18) 
Log (R75) = 1.880 + 0.609*log (K) – 2.626*log (φ)
                Eq. (19) 
Where K is permeability (md),  is porosity (%), 
and R is pore throat size (micron) in different 
percentages of non-wetting phase saturation. 

In the current study, pore throat radius was 
calculated from capillary pressure data derived from 
core analysis using Washburn equation. Afterward, 
both the Winland (Eq. 1) and Pittman (Eq. 6 through 
Eq. 19) equations were utilized for calculation of 
pore throat radius based on core porosity and 
permeability data. A comparison between empirical 
equations and core derived R35 was reveald that the 
Winland equation outperforms the Pittman equation. 
In the light of the acceptable results of the Winland 
equation, pore throat radius was simulated for 
uncored but logged intervals. For this target, porosity 
was claculated from petrophysical analysis, and 
permeability was estimated based on neural network 
approach. The neural network is a dynamic and non-
linear system composed of a large number of 
processing units (neurons) and connections between 
these units (Chen & Sidney, 1997). To model 
permeability parameters, the Feed-Forward 
Propagation network in Matlab software was used. 
Figure 4 schematically represents the network 
component used for this purpose, in which input data 
(SWE, PHIT, PHIE and SWT logs), output 
(permeability parameter), and 11 neurons for hidden 
layer were considered. In this network, hyperbolic 
tangent sigmoid function (TANSIG) for the transfer 
function of the first-to-second layer, and the linear 
tranfer function (Purelin) for the second-to-third 
layer, and the error MSE function were used. 
Validity of the results for performance of the neural 
network is approved by the plots shown in Figure 5 
and Figure 6. 
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Figure 4. A schematic structure of the Feed-Forward Propagation network designed for the estimation of permeability. 

 

 
Figure 5. The mean square error in evaluation the performance of neural network for the estimation of permeability within the studied 
reservoir.  

 
Figure 6. The good correlation between input and output data in different parts of the network for prediction of permeability within the 
studied reservoir. 
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In addition, the claculated porosity and 
permeability as well as generated pore throat radius 
as continuous logs along the studied wells are 
shown in Figure 7 and Figure 8. According to the 
Figure 7, there is a good consistency between the 
estimated and measured values for porosity and 
permeability that confirm the accuracy and 
reliability of the results both qualitatively (trend 
change) and quantitatively.  
 

Estimation of pore throat size from seismic data 
In this study, an acoustic impedance volume, 
obtained from 3D post-stack seismic inversion, was 
utilized for pore throat size estimation. Post-stack 
seismic inversion is an evaluation of post-stack 
seismic trace that tries to recreate velocity structure 
or acoustic impedance of the formations (Figure 9). 
In order to have a reliable correlation, the inversion 
based on linear sparse spike algorithm was taken 
into account. 

 

 
Figure 7. A comparison of core porosity (first track, red points) with effective porosity values determined by petrophysical evaluation 
(first track, black line) and core permeability values (the third track, red points) and the permeability determined by the artificial neural 
network (the third track, black line). Pore throat size (PTS) is shown in fourth track. A: Ilam zone (non-reservoir), B: Ilam_upper zone 
(reservoir), C: Ilam _upper-b zone (non-reservoir), D: Ilam_main zone (reservoir) and E: Ilam_poor zone (non-reservoir). 
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Figure 8. Correlation between the well logs and estimated porosity, permeability and generated pore throat size (PTS) within the Ilam 
Formation in one of the wells of the studied field. 
 

 
Figure 9. Mathematical representation of a geological section as a series of layers with different impedances, and the generation of a 
seismic record through the convolution of a source wavelet with the reflectivity series (contrasts in impedance). Inversion involves the 
deconvolution of the seismic traces to recover the reflectivity and then the impedance properties for the ground section (Yilmaz, 2001). 
 

The linear sparse spike inversion is a type of 
model based inversion which considers the 
reflection ability as big spike series within the small 
spike context, and it seems that only the big spike 
are meaningful enough (Hampson et al., 2001). 

The inversion model inputs can be divided into 
the following major sets: 

wells coordinate information 
well logs data including sonic and density logs 
formation tops 
seismic horizons 
check shots 
post stack 3D seismic data 
pore throat size logs 
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Well to seismic tie 
The recorded borehole velocity seismic data, called 
vertical seismic profile (VSP), were used for 
seismic and well transformation of well logs and 
seismic data in a common domain. Seismic 
inversion was begun with a tie of well with seismic 
data. As a sequence, synthetic and composite 
seismograms were created to measure the 
correlation between the well and seismic data for 
each individual well within a certain radius. In 
order to make the synthetic seismogram trace, 

acoustic impedance log was created by 
multiplication of sonic and density logs, and the 
reflection coefficient with convoluted seismic 
wavelet was calculated (Figures 10 and 11). 
 
Seismic inversion 
Seismic inversion is the name given to the process 
whereby geophysicists attempt to estimate the 
acoustic impedance (AI) of the rock layers from 
seismic reflection data (Russel, 1988). 

 

 
Figure 10. Amplitude phase and extracted mean wavelet used in seismic inversion. 

 

 
Figure 11. Well logs to seismic tie using mean seismic wavelet. 
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Seismic amplitude is the property of the interface 
between two acoustic layers. The interpretation of 
AI data produces more accurate and detailed 
structural and stratigraphic definition than seismic 
interpretation (HRS User’s Guide, 2015). In 
general, this attribute has strong relationship with 
petrophysical properties such as lithology and 
porosity. Seismic inversion involves taking the 
observed seismic records and an estimation of the 
shape of the seismic pulse to obtain AI. This 
parameter, in contrast to the seismic data which is 
an indicator of the borders, investigates the whole 
rock layer properties (Pendrel et al., 2006).  

The first step in seismic inversion is to generate 
an acoustic impedance model using well logs within 
the seismic horizons. After creating acoustic 
impedance model, different inversion algorithms 
(model-based, linear sparse spike, color based and 
etc.) are investigated. The inversion results in the 
studied reservoir showed that linear sparse spike 
algorithm outperforms other methods for acoustic 
impedance estimation. The inversion result based 
on this method has been shown in Figure 12. Also, 
Figure 13 illustrates a comparison between the real 
acoustic impedance and inversion result.  

 

 
Figure 12. The resulted acoustic impedance section derived from seismic inversion based on linear spars spike algorithm around the 
studied wells. 

 
Figure 13. Correlation of real and inverted acoustic impedance based on linear sparse spike algorithm in one of the wells of the studied 
field. 
 
 



404 Hosseinzadeh et al.                                                 Geopersia, 9 (2), 2019 

Extraction of pore throat size cube from seismic 
data 
The artificial neural network was used to estimate 
the pore throat radius by means of seismic data. In 
order to find the network input groups, the linear 
and non-linear relationships between existing input 
data and each output group were examined, and the 
groups with the best correlation with the seismic 
data were determined. The training and validation 
errors for different sets of input seismic attributes 
are shown in Table 1. Figure 14 demonstrates a set 
of input data (complex seismogram and inversion 
result) used for estimating R35. 

There are two important issues in verification of 
multi-attribute analysis: first, selection of the 
attributes which have more relationship with the 

target log, and second, how to determine the 
optimized number of seismic attributes (Hampson 
et al., 2001). 

In the most seismic inversion models, amplified 
operator length is used, and also the resultant 
frequency differences between the seismic data and 
well logs define the relationship between input and 
output data. Each sample is related to its nearest 
seismic sample groups, considering the high 
frequency of the well logs by applying the 
convolution operator.  

In the present study, after investigating different 
operator length values, the best results with the 
lowest errors demonstrated that the most reasonable 
values are 5 and 6 operator lengths, respectively.  

 
Table 1. The training and validation errors for different attributes that used for pore throat size estimation. 

 
 

 
Figure 14. Graphical representation of input attributes and the target log. The target log, pore throat size, is the red line, while, 
complex seismogram and inversion result are shown in black and blue colors, respectively. 
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Then, the groups of output data achieved from 
regression analysis (multiple seismic attributes), 
were used as input of artificial neural network 
(ANN) model. Then, a probabilistic neural network 
(PNN model) was created to verify the non-linear 
relationship between inputs (multiple seismic 
attributes) and outputs (PTS: pore throat size).  The 
correlation estimation error values were recorded 
for all situations. PNN was then selected as the best 
algorithm among other available methods according 
to its low estimation error and high correlation 
(Figure 15). As a result, by considering PNN as an 
optimal model, and using the optimized seismic 
attributes, all seismic volume was inverted to PTS. 
The predicted PTS from PNN model showed a 
similarity and reasonable correlation with actual 
PTS data of core samples in well locations (Figure 
16 and Figure 17).  

 

 
Figure 15. Validation diagram for determination of the optimal 
number of the attributes used in PTS prediction in the studied 
field. 
 

Finally, the non-linear relationships and proved 
network for PTS prediction at wellbores were 
applied on all seismic volume. 
 
Results and Discussion 
Application a stepwise regression showed that 
seismic attributes including acoustic impedance, 
amplitude envelope, filter 15/20-25/30 and 

derivative instantaneous amplitude are the best 
predictor set for converting the 3D seismic volume 
into a pore size cube using a probabilistic neural 
network mode. Neural network algorithm improved 
the accuracy of the regression model for PTS 
estimation. The results indicated that the 
distribution of PTS has intimate relationship with 
the reservoir architecture and variations in reservoir 
quality within the studied interval. As variations in 
PTS values, is well consistent with five distinct 
intervals of the Ilam Formation, among which two 
zones (Ilam Main and Ilam Upper) have higher pore 
throat size and porosity than the other intervals. 
This corresponds with the presence of oil-bearing 
rocks in these zones (Figures 18 and 19). The 
extracted PTS maps of different zones of the Ilam 
Formation have been shown in Figures 20 to 22.   
 

 
Figure 16. Plot showing the result of Artificial Neural Network 
algorithm for estimation of pore throat size. The red line 
illustrates the estimated log and the black line shows original 
log. According to the figure, the amount of correlation is 0.912 
and the error value is less than 5.7. 
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Figure 17. Cross plot showing the correlation coefficient between measured and predicted pore throat size (PTS). 

 

 
Figure 18. The extracted seismic section modeled by PNN, showing 5 distinct zones based on the distribution of pore throat size within 
the reservoir interval. 
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Figure 19. 3D pore throat size changes in Ilam Interval. The blue and purple parts are the main reservoir parts. The green and yellow 
colors show the small pore throats sizes. 

 

 
Figure 20. Pore throat size time map in top of the Ilam Formation (Ilam Zone). 
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Figure 21. Pore throat size time map at the base of Ilam Formation (Ilam Poor Zone). 

 

 
Figure 22. The average pore throat size time map in the middle of Ilam Formation (Ilam Main Zone). 
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Conclusion 
In this study with the target of pore throat size 
evaluation of carbonate reservoirs, a combination of 
core, petrophysical logs and seismic data were used. 
After estimation of pore throat size using empirical 
equations and based on core data, the pertinent log 
was extracted from petrophysical well logs, and 
then the results were correlated with seismic data. 
So, the 3D volume of seismic data was inverted to 
acoustic impedance, by utilization a Linear Sparse 
Spike algorithm. Afterward, a formulation between 

seismic attributes and pore throat size (PTS) as 
target log, were established using a step-wise 
regression and a probabilistic neural network, 
which based on seismic volume was converted into 
pore size cube.  

The results show good consistency between 
variations in PTS values and reservoir characteristics 
of reservoir zones. Among different zones of the 
studied formation, Ilam Main and Ilam Upper zones 
show higher reservoir quality in terms of their pore 
throat size and porosity values.   
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