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Abstract 
The increase of heavy metals concentration in soils is potentially threatening the environment and human health. In this paper, 
multivariate analysis methods such as Positive Matrix Factorization (PMF), Principal Component Analysis (PCA) and Cluster 
Analysis (CA) combined with geostatistical method were employed to identify the potential sources of soil pollution. A collection of 
103 samples were obtained from surface soils of different types of lithology and landuse in Zanjan Basin, Iran. The concentration of 
As, Bi, Cd, Co, Cr, Cu, Pb, Fe, Mo, Ni, Zn, Se and Hg beside of physical and chemical properties were measured. The results showed 
a strong effect of anthropogenic sources on the enrichment of heavy metals especially, Zn, Pb, Cd, As and Cu in soils. From the results 
of PMF and PCA, the four–factor model showed the optimized solution for this study. One of the factors is related to the background 
concentration, another one is associated with agricultural activities and the other two are associated with industrial activities and 
industrial waste. The PMF method in comparison with the other common methods in multivariate analysis presents physically 
acceptable and more reasonable results because of non–negative condition for factors and weighting of the variables.  
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Introduction 
Pollution of soils by heavy metal is a growing 
concern, because of the potentially undesirable effects 
of heavy metals on the environment and human 
health. In recent decades, by the rapid development of 
urbanization and industrialization, landuse changes, 
the increment of wastes, agricultural activities and 
unsuitable wastes management, soil pollution has 
changed to become one of the main environmental 
concerns (Liang et al., 2017b; Liang et al., 2017c). 
Therefore, attention of researchers was drawn to the 
problem of soil pollution, to prevent additional 
environmental hazards and study applicable 
approaches of soil remediation (Hao et al., 2016; 
Sharma et al., 2016; Turekian & Wedepohl, 1961; 
Udayakumar et al., 2014; Zhang et al., 2016; Liu et 
al., 2016). Also in Iran, industrial and agricultural 
activities, landuse changes and inappropriate waste 
management have changed soil pollution to one of the 
environmental concerns.   

Heavy metals of soils are naturally occurring 
elements of the Earth's crust; therefore their 
concentrations tend to remain low, and complex 
pedological and geological processes can explain 
most of the soil dissimilarities (Bhuiyan et al., 
2010; Wang et al., 2015; Zhang et al., 2013; Zhao 
et al., 2010). In recent decades, concentrations of 
heavy metals in soils have exceeded natural 
concentrations from pedogenesis due to increase in 

anthropogenic inputs, even at a regional scale 
(Facchinelli et al., 2001; Sharma et al., 2016). 
Anthropogenic inputs such as industrial 
development, urbanization, pollution from 
metallurgical activities, waste disposal, influx of 
agricultural fertilizers and changes in land 
management systems have significant influences on 
the changes of soil properties (Zhang et al., 2008; 
Zhao et al., 2010; Harris et al., 2011; Lin et al., 
2011; Olubunmi & Olorunsola, 2010). 

Understanding each possible source of heavy 
metals and the degree of correctness of the 
apportioned outcomes is a precondition for 
developing pollution control strategies (Chen et al., 
2013; Huang et al., 2015; Sharma et al., 2016; 
Zhang et al., 2008; Zhao et al., 2010). Application 
of multivariate statistical methods for identifying 
pollutant have been developed in recent decades, 
for example, the chemical mass balance (CMB) 
model, principal component analysis (PCA), cluster 
analysis (CA), positive matrix factorization (PMF) 
and multiple linear regression (MLR). In contrast to 
CMB models, PCA, CA and PMF models do not 
need information on the potential sources of their 
profiles theoretically (Chen et al., 2013; González–
Macías et al., 2013). Apart from the mentioned 
methods, geostatistical methods can be used for 
estimation of polluted areas, according to the 
calculation of unbiased approximation of heavy 
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metal concentrations in areas without samples 
(Amini et al., 2005; Hussain et al., 2015; Zhang et 
al., 2008). Also, a combination of multivariate 
statistics with geostatistical methods is used for 
source identification of soil pollution and their 
spatial distribution (Liang et al., 2016; Liang et al., 
2017a). Moreover, if the researcher has a general 
knowledge of the probable pollutants, multivariate 
analysis methods can provide more accurate results 
even when exact sources information are missing. 
These characteristics are the key advantages of 
multivariate methods when compared with other 
receptor models.    

Multivariate statistical analyses, like PCA and 
CA have generated acceptable results in soil 
pollution studies (Davis et al., 2009; Facchinelli et 
al., 2001; Li, 2009; Mitchell et al., 2016; Reimann 
et al., 2007; Turekian & Wedepohl, 1961; Zhang et 
al., 2016; Zhao et al., 2010; Ali & Malik, 2011).  
Though, its application is dependent on restrictions 
such as management of uncertainties and handling 
of noisy data (Paatero & Tapper, 1994), the 
possible occurrence of negative factor loadings is 
problematic to interpret in terms of certain positive 
physical variables such as masses, concentrations 
and other physicochemical parameters (Vaccaro et 
al., 2007). In the early 1990s, Paatero and Tapper 
(1994) developed PMF model. It basically controls 
such restrictions by using empirical uncertainties in 
the data matrix as well as by limiting the solutions 
to non–negative values (Paatero & Tapper, 1994). 
Similar to PCA, PMF also has the advantage of 
being a posteriori method, which does not depend 
on prior information of sources by direct 
measurement or from emission inventories 
(Vaccaro et al., 2007). PMF has been recently used 
in the examination of temporary data such as 
atmospheric pollution by particulate matter (Kim et 
al., 2003; Pekey et al., 2012; Polissar et al., 1998)) 
and study of wet deposition (Anttila et al., 1995).  
PMF has been effectively used to spatially 
distribute data sets to assign the sources in 
sediments (Chen et al., 2013) and soils (Comero et 
al., 2012; Vaccaro et al., 2007; Wang et al., 2009; 
Guan et al., 2018; Liang et al., 2017a).  

In this paper, multivariate analysis including 
PCA, CA and especially PMF were used to 
determine the main pollutant of soil in Zanjan 
Basin, Iran. Source identification technique based 
on multivariate methods and support of 
geostatistical methods, have been used for 
determination of potential soil pollution sources at 

this regional scale. The results of this research can 
help in determining the potential sources of heavy 
metals from industrialization and agricultural 
development at the study area.  
 
Materials and Methods  
Study area  
Zanjan Basin is in the central part of Zanjan 
province, northwest of Iran (Fig. 1). The area is 
susceptible to soil pollution because of industrial 
towns, cities, and villages in this basin. Zinc and 
copper industrial town where smelting and refining 
are done and other industrial towns are located in this 
basin. 

Zanjan province has several mines and related 
industrial activities due to natural condition and 
lithological properties (Khamehchiyan et al., 2011). 
The most industrial towns of the province are active 
in this basin. Inappropriate waste management 
around industrial towns is another reason for 
increase in heavy metals in soil and environment.  

The geology of this basin (Fig. 1) includes 
different lithological units that formed outcrop in 
the mountains in western and eastern parts of the 
basin. These mountains in the western parts include 
mainly igneous lithology comprised of andesite, 
tuff, granite and granodiorite.  In eastern parts of 
the basin, there are also tuff and andesite and 
sedimentary rocks include dolomite and limestone. 
The northern part of this basin is mainly comprised 
of hilly topography consisting of conglomerates and 
marls. The central area includes terraces and recent 
alluvia which are mainly comprised of weathering 
of surrounding rocks (Stocklin & Eftekharnezhad, 
1969). Most of the samples were collected from this 
area. This basin has different landuses. Except for 
industrial towns and urban areas, most of the areas 
of this basin include ranges and dry–farming. The 
southeastern part of the basin and some areas 
around Zanjan city has agricultural activities. 
 
Soil sampling  
Collection of 103 samples was done in the study 
area. Sampling design is a combination of 
systematic and judgmental sampling. This design 
helped for complete coverage of the study area 
and also soil pollutants were considered. The 
rocky outcrops excluded and in remained areas 
distance of samples are about five km or less. The 
density of samples near to industrial towns is 
higher than other areas, to evaluate the radius of 
pollution around of these states.  
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Figure 1. Location of the study area in Iran and the lithology map of the basin. 

 
Samples were obtained from 0–30 cm depth, and 

they are composed of four sub–samples from the 
vortexes a square block with 20 m width. Sub–
samples mixed to get a bulk sample. A stainless 
steel spatula was used for collection of samples and 
they kept in plastic bags. Sampling sites are 
illustrated in the lithological (Fig. 1) of the study 
area. Samples were obtained from different 
geological condition and also different types of 
landuse. Duplicate samples were obtained in some 
points to decrease the uncertainty of sampling. 
Samples were transferred to the laboratory for 
physical and chemical analysis.  
 
Analysis  
The soil samples were air–dried and then ground for 
suitable meshes (2 mm sieve) for chemical analysis. 
For sample preparation after weighing 0.8 g of 
dried sample, 5 ml 65% HNO3 added and then 
placed in TOPwave Microwave Digestion 
(Analyticgena®) for 25 minutes with 40 bar 
pressure. The digested solutions were made to 50 

ml with deionized water for analysis by Atomic 
Absorption Spectrometer (AAS) using ContrAA 
700 instrument. All the soil samples were analyzed 
by AAS  for total As, Bi, Cd, Co, Cr, Cu, Pb, Fe, 
Mo, Ni, Zn, Se and Hg. The levels of Bi and Cd 
after digestion were measured by graphite furnace 
of AAS. Hg and As were measured by the hybrid 
method of AAS and the other heavy metals were 
determined by the flame of AAS. Duplicate samples 
were measured in the same procedure to evaluate 
the precision and bias of analysis. The main 
physico–chemical parameters such as grain size, 
pH, cation exchange capacity (CEC), the percentage 
of total neutralizing value (TNV), organic matter 
and EC were also measured. Sieving performed 
based on ASTM D 422–63. Values of pH were 
measured in H2O and 0.01 CaCl2 solutions with a 
soil/solution ratio of 1:5 following Conyers and 
Davey, 1988. EC measured with a conductivity 
meter in a saturated paste of soil and water 
(Rhoades, 1996). Organic matter contents were 
measured by ignition of samples at a temperature of 
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450ºC (Davies, 1974). CEC of samples were 
measured by Bower method described by Chapman 
1965. TNV measured by Bernard calcimeter 
method developed by Hulseman, 1966.  
 
Positive matrix factorization  
Basic Equation 
PMF was developed by Paatero and Tapper in 
1994, which controls the limitations of previous 
methods by using non–negativity constraints to find 
more physically understandable factors (Comero et 
al., 2012). In comparison with PCA, PMF is not 
sensitive to missing values (MV), below detection 
limit (BDL) and outlier data, because it is a 
weighted least–squared model and individual error 
estimations give optimal weights for scaling of data 
(Paatero & Tapper, 1994). So, in PMF, non–
representative data can be handled by reducing their 
significance and skewed distributions could be 
correctly weighted rather than normalized. Also, 
mathematical algorithm of PMF prevents the 
existence of negative factor scores, which can 
appear from PCA analysis, permitting more actual 
realistic answers (Comero et al., 2012). Error 
estimation of observed values allows the user to 
manage outlier data by using the estimates as 
weighting parameter (Sofowote et al., 2008).   

The algorithm of the PMF has been 
comprehensively defined (Paatero et al., 2002; 
Paatero & Tapper, 1994). The principle of PMF 
algorithm starts from the basic mass balance 
equation is described by the following equation: 

                       (1) 
where xij is the ij–th elements of the matrix of input 
data, p is the number of determined factors, gik and 
fkj are the elements of the factor scores and factor 
loadings matrices, respectively and eij are the 
residuals (the difference between input data and 
predicted values)  (Comero, 2011; Paatero et al., 
2002; Liang et al., 2017.a ).   

The PMF calculates elements based on a 
weighted least–squared problem which minimizes 
the so–called object function Q, defined in Paatero 
(1997) and specified by the simplified equation 
(Comero, 2011): 

                                           (3) 
where Sij is error estimates of data values. 
Typically, environmental data sets can contain BDL 

and/or missing values. To make use of their 
information content, suitable estimates for their 
values and uncertainties must be determined 
(Comero, 2011). 

The essential input data for PMF are the 
measured values, X, and uncertainties of the 
measured values, E. Measured values and 
uncertainties for PMF should be positive values 
(González–Macías et al., 2013). PMF 5.0 released 
by U.S. Environmental Protection Agency (Norris 
et al., 2014) was used to solve the problem of this 
research. This model developed based on basic 
model.   
 
Data pretreatment 
Missing values could be replaced by the geometric 
mean of the values, and their associated 
uncertainties set at four times of this geometric 
mean concentration (Kim & Hopke, 2005). 
According to the studies of Kim & Hopke (2005), 
Farnham et al., (2002) and Polissar et al., (1998), 
the measured concentrations BDL were substituted 
by half of the BDL values, and their associated 
uncertainties were set at 5/6 of the BDL values. 
Fortunately, there is no missing value in these data. 

The variables were categorized as strong, weak 
or very weak based on the signal to noise ratio 
(S/N) range recommended by Reff et al., (2007). As 
the ratio of S/N for Hg is very low due to BDL of 
many samples, it is categorized as very weak data 
and it was omitted. The other heavy metals have 
high S/N ratios and considered as a strong category.  
 
Results and discussion 
General characteristics of parameters 
Descriptive statistics of the concentration of 
elements and physicochemical variables at sampling 
points are presented in Tables 1 and 2. The 
concentration of Se is BDL, so the results of these 
parameters were omitted. There is no missing value 
(MV) in the results. Distributions of most of the 
parameters are strongly positively skewed, except 
physical parameters, Fe, Cr, Ni, and Co. Zn, Cu and 
Cd are highly skewed and it is expectable because 
of great industrial activities related to these heavy 
metals. 
 
PCA and CA  
Cluster analysis (CA) was used for clustering of 
variables. CA was performed on variables using the 
Ward's method based on Euclidian distance to 
categorize variables, in order to find clusters which 
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show similar behavior. Dendrogram of variables 
(Fig. 2) shows three main clusters were 
distinguished. 

The first cluster includes Cd, Pb, Zn, and As 
related to industrial activities in this basin with their 

main activities related to zinc and lead. The second 
cluster that contains Ni, Cr, Co and Fe appears to be 
related to the background concentration of these 
metals in the study area.  

 
Table 1. Descriptive statistics of the concentration of elements 

Elements 
(mg/kg) 

Mean Median Min Max SD Skewness CV (%) 

Bi 0.68 0.51 0.01 5.23 0.73 4 107 

Cd 0.54 0.36 0.01 4.89 0.74 4.4 137 

Co 20.3 19.2 12.3 45.3 5 2.5 25 

Cu 59.1 38 20.7 763.4 89.9 6 152 

Pb 76.9 27.3 4.3 975 150.5 3.8 196 

Ni 53.6 52.6 20 98.8 16.6 0.4 31 

Zn 425.4 125.4 62.7 16260 1654.9 8.9 389 

Fe 54258.6 52030 35150 81885 10831.7 0.5 20 

Cr 43 41.6 22.2 80.7 11.5 0.8 27 

Mo 0.3 0.3 0.1 1 0.1 2.2 37 

V 62.4 55.9 30.8 184.1 22.1 2.4 35 

As 12.3 10.7 1.4 43.6 6.2 2.7 50 

Hg * * <DL 5.8 * * * 
                 * It cannot be calculated because of BDL data, DL: Detection Limit 

 
Table 2. Descriptive statistics of physicochemical parameters 

Physicochemica
l parameters 

Mean Median Min Max SD Skewness CV (%) 

EC (μS/cm) 745.6 411 2.2 3980 791.5 1.8 106.2 

CEC 
(mEQ/100g) 

27.1 22.6 10.3 77.9 13 2.2 47.9 

OM (%) 1.9 1.5 0.3 6.8 1.4 1.5 70.6 

TNV (%) 11.7 11.5 0.6 34.1 5.7 0.4 48.8 

Clay (%) 7.9 7 1 22 4.5 0.9 56.3 

Silt (%) 35.4 35 9.5 56 10.5 0 29.6 

Sand (%) 56.8 58 26 89 13.9 -0.1 24.5 

pH 8.1 8.1 7.1 8.8 0.3 -0.3 3.6 

 

 
Figure 2. Dendrogram of cluster analysis of variables 
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The third cluster contains Mo, V, Bi, and Cu 
which can be related to another type of lithological 
background in this area.   

PCA with varimax rotation was employed for 
heavy metal concentrations of samples. Principal 
components with Eigenvalue larger than 1 (Kaiser 
Criterion) were selected. Four PCs were extracted 
which explains about 74% of the total variation 
(Table 3). By using geostatistical methods, spatial 
maps of principal components scores were 
produced and presented in Fig. 3.  

The first PC, including 31% of the total variance, 
was positively associated with cadmium, lead, zinc, 
and arsenic. PC1 could be attributed to 
anthropogenic activities relating to the industrial 
activity associated with Zn and Pb mines at the 
study area. As shown in Fig. 3, the high scores of 
PC1 were around the industrial towns; therefore, 
this PC is related to industrial towns located at the 
central part of the basin.  

The PC2, explaining 18% of the total variance, is 
described by high–positive loadings in Co, Cr, and 
Ni. These elements were found to have the natural 
concentration in soils. The high values of this PC 
are distributed in the eastern part of the study area 
which igneous rocks outcropped. Vanadium, 
molybdenum, and iron showed greater cooperation 
in the third component (PC3). This PC can also be 
explained by the natural background of elements.    

The PC4, explaining 10% of the total variance, 
was correlated mainly with Bi, however, Cu loaded 
negatively. For all components, there are negative 

values for some variables that cannot be interpreted 
as physical behavior.  
 
PMF 
Factor loading of PMF 
Data matrix and the number of sources were 
inputted to PMF model. The concentration values 
were used for the measured data and the Formula 
(4) (Polissar et al., 2001) was used as the total 
uncertainty given to each measured data. 

                                             (4) 
where uij is analytical uncertainties, DL is the 
method detection limit, and a and b are scaling 
factors, both determined by trial and error. 

BDL values were substituted by half of the 
detection limit values, and their total uncertainties 
were set as five sixth of the detection limit values 
(Chen et al., 2013; Polissar et al., 2001).  
 
Number of factors  
To determine the number of sources, it is essential 
to evaluate different numbers of sources and find 
the best one with the most physically significant 
results. Furthermore, since rotational obscurity 
exists in factor analysis modeling, PMF was run 
many times with different FPEAK values to 
determine the range within which the objective 
function Q value remains relatively fixed (Kim et 
al., 2004).  

 
Table 3. Principal component analysis of variables 

Parameter 
Rotated Component 

1 2 3 4 

Bi .122 -.144 -.075 .774 

Cd .923 .069 -.035 .069 

Co .530 .615 .172 -.217 

Cu .111 -.219 -.067 -.688 

Pb .903 .065 -.029 -.055 

Ni .196 .899 -.117 .055 

Zn .862 .093 .076 -.103 

Fe -.130 .381 .620 -.127 

Cr -.133 .858 .183 .114 

Mo .292 -.135 .776 .052 

V -.175 .063 .891 .024 

As .833 -.076 -.091 .135 

Eigenvalue 3.601 2.181 1.884 1.191 

Variance explained (%) 30.011 18.177 15.700 9.922 

Cumulative % variance 30.011 48.189 63.888 73.810 
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Figure 3. Spatial distribution of 4 PCs of principal component analysis 

 
Initial runs of PMF were conducted by two to ten 

factors in order to specify the optimal number of 
factors, which determined 4 factors as the best 
solution for this problem. 
 
Physical interpretation  
Fig 4 shows the PMF results and displays the 
proportion of each variable (As, Bi, Cd, Co, Cu, Cr, 
Fe, Mo, Ni, Pb, V, and Zn) in factors determined 
with the model. The spatial distribution maps of 
factors were prepared by applying geo–statistical 
interpolation of the G factor scores (Fig. 5). These 
maps can be used in the interpretation of factors.  
 
Factor 1 (Natural influence) 
The first factor showed high proportions of Fe, Ni, 
Cu, Co, Cr, Mo, V and As. This factor could be 
linked with a component controlled by parent 
lithology. According to geological map of the study 
area (Fig. 1), higher scores of this factor seen 
around igneous rocks (Eastern part of the study 

area) may increase natural heavy metal 
concentration by weathering of parent material. So, 
this factor can be interpreted as natural processes 
and background concentration of elements in soil. 
Also, a strong correlation between Ni and Cr (based 
on Pearson correlation) at this area matches the 
spatial patterns of soil parent material, indicating 
that the sources of Cr and Ni are predominately 
geochemical (Zhao et al., 2010). This factor can 
compare PC2 and PC3 of PCA. High values of 
these factors have been distributed in east–northern 
part of the study area. The lower value of this factor 
is realized in industrial areas. 
 
Factor 2 (Anthropogenic sources) 
The second factor determined by PMF is described 
by Pb and As variation which could be interpreted 
to represent industrial activities. The main sources 
of Pb in the environment consist of manufacturing 
activities and atmospheric deposition.  
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Figure 4. Factor loadings of the resolved problem by PMF 

 

a  b  

c d 
Figure 5. Spatial distribution of resolved problem by PMF for a) Factor 1 (Natural influence); b) Factor 2 (Anthropogenic Sources); c) 
Factor 3 (Anthropogenic Sources); d) Factor 4 (Agricultural and industrial influence). 
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Mining, disposal, and incineration of municipal 
and industrial wastes, fossil fuel processing and 
combustion, wood preservation, pesticide 
production and application are the anthropogenic 
activities that discharge arsenic into the 
environment (Huang & Conte, 2009), and most of 
them occur in the study area. PC1 of PCA analysis 
is same as this factor. 
 
Factor 3 (Anthropogenic sources) 
The 3rd factor is characterized by Zn and Cd 
concentrations and less strongly by Pb. Zn is a very 
common soil pollutant and its sources consists of 
domestic wastewater, coal–burning power plants, 
and manufacturing activities including metals, 
atmospheric fallout, and fertilizer and cement 
production (González–Macías et al., 2013). The 
main source of anthropogenic Zn in the 
environment is industrial states which have 
activities of refining zinc and lead. Also, 
unmanaged disposal of industrial waste from 
metallurgical activities are the main sources of Cd 
and As around industrial towns located in this area. 
Higher scores of factor 3 in the map (Fig 5.c) 
around industrial town can verify this statement. 
This factor can be used to compare the PC1 of 
PCA, which in both spatial maps, have higher 
values distributed around industrial towns.  
 
Factor 4 (Agricultural and industrial influence) 
The fourth factor is dominated by Bi and Cd. Other 
elements have low proportion in this factor. 
Bismuth occurs in native form and in minerals such 
as bismite. The production of metallic bismuth is 
related to lead and copper refining. Also, Bismuth 
compounds are used as pesticides which are highly 
insoluble (Krieger, 2001). So, Bi has remained in 
agricultural areas. This factor can be associated 
with agricultural activities and some industrial 
activities, especially in southeastern part of this 
basin.  The spatial map of factor 4 shows higher 
value in the agricultural area (Fig. 5.d). 
 
Conclusion  
Soil has complex media and due to this, recognition 
of physical, chemical and biological behavior for 
better interpretation and understanding of its 
environment is necessary. Understanding the 
amount of heavy metals in the environment is 
important to mankind and wildlife health. Source 
apportionment studies can be used as a fairly 
precise, rapid and cost–effective method for 

identifying pollution sources and their relative 
contributions to the pollution. Soil pollutant 
determination is one of the essential parts of soil 
pollution studies. If the main sources of soil 
pollution are determined, then control and 
prevention is easier and have lower costs in the 
treatment and remediation processes. 

In the present study, PMF, PCA and CA and 
using geostatistics were applied to evaluate the 
main sources of heavy metal pollution. Descriptive 
statistics of data in the study area indicates 
significant variation of soil heavy metal 
concentrations in the study area. Results show a 
strong influence of anthropogenic sources on the 
enrichment of heavy metals, especially Zn, Pb, Cd, 
As, and Cu in soils of the study area.  

PCA and CA were done for heavy metal 
concentrations. PCA results showed 4 principal 
components which are potential sources for soil 
pollution. But negative values in the results posed 
problems in the interpretation of the results, 
especially for PC–4. PMF allows controlling of 
non–representative data and outlier data to decrease 
their importance by using specific error estimates. 
Four factors were determined. One of them is 
related to background components and natural 
influence of elements in soils. Prepared map for this 
factor showed higher values in the eastern part of 
the study area which igneous rocks are dominant.  
This subject can be helpful in the management and 
landuse strategies of the study area. Two factors 
were associated with industrial activities in this 
area. One of them was mainly controlled by Zn and 
Cd and the other one is related to Pb and As which 
is associated with anthropogenic sources including 
smelting and refining of Zn and Pb, industrial 
activities and inappropriate waste disposal. So, 
decision–makers can use these results in 
remediation and cleanup programs, and future 
plans. The last one is controlled by agricultural 
activities.  

Application of the PMF approach produced 
interesting results, besides, GIS–based technique 
was successfully applied on the positive scores 
produced. Therefore, the combination of a 
geostatistical method by PMF results leads to 
classified map which is very useful in the 
interpretation of results and determination of 
pollutant.  
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