Prospecting polymetallic mineralization in Ardestan area, Central Iran, using fractal modeling and staged factor analysis

Akram Ostadhosseini¹, Mehrdad Barati², Peyman Afzal³, Insung Lee⁴

¹ Department of Geology, University of Bu Ali Sina, Scientific Research Institute of Copper Gold Ardestan, Hamedan, Iran
² Department of Geology, University of Bu Ali Sina, Hamedan, Iran
³ Department of Mining Engineering, South Tehran branch, Islamic Azad University, Tehran, Iran
⁴ School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

*Corresponding author, e-mail: barati@basu.ac.ir

The purpose of this study is to determine geochemical anomalies on lithogeochemical data from Ardestan area, Central Iran, using concentration-number (C-N) fractal modeling and staged factor analysis. Staged factor analysis is used to the recognition of genetic correlation and elimination of non-indicator elements in three steps. Factor scores of elements were calculated and geochemical data classified by the C-N fractal model. According to the anomaly values, the distribution of elemental concentration for Mn and F1-3 were divided in four classes and five geochemical groups of Cu, Ag, Fe, F2-3 and F3-3 have been identified. Main geochemical anomalies are located in the NW, NE and SE of the study area. Obtained results from fractal and factor analyses is confirmed by field observations, petrographic and mineralogic studies, indicating pyrite, chalcopyrite, chalcocite, covellite, argentite, malachite, azurite, magnetite, hematite and pyrolusite are main ore minerals hosted by andesites and basaltic andesites.

Keywords: Concentration–Number (C-N) Fractal Model, Staged Factor Analysis, Polymetallic Mineralization, Ardestan

Introduction

Geochemical exploration methods are applied to mineral prospecting and identification of different types of deposits (Hawkes & Web, 1979; Carranza, 2009; Coker, 2010). Factor analysis is a multivariate analytical method in interpretation of the correlations between variables and variations in the multivariate datasets by a few factors. In factor analysis data is reduced into a few dimensions based on covariance or correlation matrix of variables and then a large number of variables are combined into a smaller set of variables or factors (Krumbein & Graybill, 1965; Tripathi, 1979; Johnson & Wichern, 2002; Zuo et al., 2013; Afzal et al., 2016; Parsa et al., 2016; Parsa et al., 2018). This method is widely used to identify the intrinsic variability of a geochemical dataset and specify the geology and mineralization processes through the correlation between the geochemical data (Muller et al., 2008; Yousefi et al., 2012; Shamseddin Meigoony et al., 2013; Afzal et al., 2016). Yousefi et al. (2014) presented staged factor analytical method to remove non-indicator elements and identified significant geochemical signatures.

Specification of geochemical anomalies from a background is important in recognition and explanation of ore-forming processes (Hawkes & Web, 1979; Kürzl, 1988; Cheng & Li, 2002; Carranza, 2008; Afzal et al., 2010; Hassanpour & Afzal, 2013; Zuo et al., 2013; Nazarpour et al., 2015; Chen & Cheng, 2016; Ghezelbash & Maghsoudi, 2018). For this purpose, several methods have been used, and the traditional methods are related to the frequency distribution of elements, including probability graphs, univariate and multivariate analyses (Hawkes & Webb, 1962; Rose et al., 1979; Stanley & Sinclair, 1989; Galuszka, 2007; Ziaii et al., 2009). The main problem of these methods is that they do not remark the location and extent and magnitude of the anomaly, are unable to identify weak-intensity anomalies and do not provide spatial information of geochemical data (Cheng et al., 1994; Afzal et al., 2010). More recently, the spatial statistical methods such as fractal analysis and kriging consider factors such as spatial correlation and frequency distribution, correlation between adjacent samples, correlation coefficient, and reveal anomalies with low intensity that are hidden in a strong background (Grunsky & Agterberg, 1988; Cheng, 2007). The fractal modeling was established by Mandelbort (1983) which has been extensively utilized in geosciences, especially for determining the anomalous areas (Goncalves et al., 2001; Lima et al., 2003; Cheng & Agterberg, 2009; Sun et al., 2009; Afzal et al., 2010; Arias et al., 2011; Wang et al., 2011; Afzal et al., 2013; Nazarpour et al., 2015; Rezaei et al., 2015; Wang & Zuo, 2015; Zhao et al.,...
et al., et al., (Berberian & King, 1981; Shahabpour, 2007; Omrani & Talbot, 2006). This magmatic belt represents Sirjan structural zones. Volcanic activity in this belt extended parallel to Zagros thrust and Sanandaj-Sirjan divisions (Fig. 1; Aghanabati, 2006). The SBMB is a belt based on the sedimentary-structural features of Sahand-Bazman (Uriumieh-Dokhtar) Magmatic Belt (SBMB) in the middle segment of the SBMB around the Ardestān area consists of different successions of volcanic and intrusive rocks (Fig. 1). The Miocene diorite- monzodiorite bodies intruded into the Eocene volcanic units. In the southwest of the area, these intrusive units are juxtaposed with a fault boundary (Marbin reverse fault) adjacent to Eocene volcanic units. Eocene volcanic units include basaltic andesite, andesite, rhyodacite, rhyolite, tuffs and ignimbrites. Alteration zones, developed in rock types, include propylitic, argillic, siliceous and carbonateous. The Cu ore mineral occurrences are numerous and consist mostly of malachite and azurite within calcite and quartz veins. Sulfide minerals consist of pyrite, chalcopyrite, argentite, chalcocite, bornite, covellite and oxide minerals are magnetite, hematite, goethite and pyrulosite. There are three major structural features with trends of the N–S, NW-SE and NE–SW faults (Fig. 1).

Geological setting
The study area is located 21 km to the SW of Ardestān city and 80 km to the NE of Esfahan (Central Iran). This area is situated in the central part of Sahand-Bazman (Uriumieh-Dokhtar) Magmatic Belt (SBMB) based on the sedimentary-structural divisions (Fig. 1; Aghanabati, 2006). The SBMB is extended parallel to Zagros thrust and Sanandaj-Sirjan structural zones. Volcanic activity in this belt started from Cretaceous and has been continued Quaternary. This magmatic assemblage includes volcanic rocks with a range of basic to acidic, tuff, agglomerate and plutonic rocks. The SBMB results from Neotethyan oceanic subduction beneath Central Iran plate from Mesozoic to Cenozoic (Stocklin, 1977; Berberian & King, 1981; Alavi, 1994; Shahabpour, 2005; Allen et al., 2006; Ghasemi & Talbot, 2006). This magmatic belt represents geochemical characteristics of subduction zones with features of calc-alkaline to alkaline magma affinity (Berberian & King, 1981; Shahabpour, 2007; Omrani et al., 2008; Dargahi et al., 2010; Rajabpour et al., 2017). The SBMB is important from the aspect of structural geology and tectonics because of large active faults, including Qom-Zefreh fault and its situation among geological provinces of Central Iran, Sanandaj-Sirjan and Zagros folded belt. The SBMB hosts porphyry Cu±Mo±Au deposits such as Sungun, Sarcheshmeh, Meiduk, Kahang and Darchezar (Dewey et al., 1973; Brookfield, 1977; Farhoudi, 1978; Shahabpour, 1994; Atapour & Aftabi, 2007; Boomeri et al., 2009; Daneshvar Saein, 2012; Zarasvandi et al., 2015; Jamali, 2017; Rajabpour et al., 2017) and other associated deposits with this geodynamic origins such as copper-gold porphyry, gold epithermal and manganese-iron (Bazin & Hubner, 1969; Amidi & Emami, 1984; Shahabpour, 1994; Shafiei et al., 2009).

Different stages of Cenozoic magmatic activity in the middle segment of the SBMB around the Ardestān area consists of different successions of volcanic and intrusive rocks (Fig. 1). The Miocene diorite- monzodiorite bodies intruded into the Eocene volcanic units. In the southwest of the area, these intrusive units are juxtaposed with a fault boundary (Marbin reverse fault) adjacent to Eocene volcanic units. Eocene volcanic units include basaltic andesite, andesite, rhyodacite, rhyolite, tuffs and ignimbrites. Alteration zones, developed in rock types, include propylitic, argillic, siliceous and carbonateous. The Cu ore mineral occurrences are numerous and consist mostly of malachite and azurite within calcite and quartz veins. Sulfide minerals consist of pyrite, chalcopyrite, argentite, chalcocite, bornite, covellite and oxide minerals are magnetite, hematite, goethite and pyrulosite. There are three major structural features with trends of the N–S, NW-SE and NE–SW faults (Fig. 1).

Methodology
Staged factor analysis
The staged factor analysis is a multivariate analytical method that reduces the number of geochemical variables to a few and creates some correlations among these variables (Carranza & Hale, 1997; Cheng, 2010). The staged factor analysis categorizes geochemical data and determines indicator elements related to target deposit (Johnson & Wichern, 2002; Yousefi et al., 2014; Wang & Zuo, 2015). In this method, the combination of variables, instead of one single variable, are applied; therefore, increases the possibility detection of geochemical halo around the ore body and identifies anomalies associated with mineralization, and decreases the effects of random errors in using of combined variables (Yousefi et al., 2012). The maximum likelihood method (ML) and principal factor analysis (PFA), which operates
basically like principal component analysis (PCA) but with a decreased correlation or covariance matrix, are used to extract the prevalent factors in factor analysis (Reimann et al., 2002; Treiblmaier & Filzmoser, 2010). The principal component analysis was applied to extract factors in this study. Varimax rotation function utilized and factors with eigenvalues greater than 1 were remained (Kaiser, 1958). Finally, the elements with threshold values of 0.6 and higher were considered.

Figure 1. Location of Ardestan in the structural map of Iran (Stocklin, 1977) and geological map of the study area (Radfar, 1999).
C–N fractal modeling

The C–N fractal model was established for defining anomaly values. The C–N fractal model is based on an inverse relationship between elemental concentration and cumulative frequency of samples (Wang et al., 2008; Zuo et al., 2009; Hassanpour & Afzal, 2013; Rezaei et al., 2015). This model is presented by the following equation:

\[N(\geq C) \propto \rho^{-\beta}. \]

(1)

Where \(N(\geq C) \) indicate the number of samples that have concentration values higher or equal to \(\rho \) value. The \(\rho \) is elemental concentration and \(\beta \) is the fractal dimension. An important advantage of this model is that calculations can be performed before estimating raw data and the raw data may not have been undergone pre-treatment and evaluation (Deng et al., 2010; Hassanpour & Afzal, 2013).

Discussion and results

In this study, 90 lithogeochemical samples were collected from the deposit, and analyzed by inductively coupled plasma mass spectrometry (ICP–MS) method at the Zarazma company in Iran for 56 elements. Pb, Ag, Mn, Fe, Co, Ni, V, Zn and Cu are the exploration target. Detection limits are 0.1 ppm, 5 ppm and 100 ppm for Ag, Mn and Fe, respectively and 1 ppm for Co, Ni, V, Zn, Pb and Cu. Staged factor analysis, used to determine significant geochemical signatures and elements, was classified using factor analysis by the SPSS software package. For this purpose, three steps of factor analysis were performed on geochemical data for recognizing significant multi element associations (Table 1).

In the first stage, the elements with values less than 0.6 including Mg, W and Cr were removed. The second stage of factor analysis was performed on the remaining data other than Ba, Ca, P, U, Ti, Mo, As and Sn.

<table>
<thead>
<tr>
<th>Element</th>
<th>First stage</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.191</td>
<td>0.247</td>
<td>0.892</td>
<td>-0.064</td>
<td>0.133</td>
<td>0.004</td>
</tr>
<tr>
<td>Ba</td>
<td>-0.069</td>
<td>-0.188</td>
<td>-0.022</td>
<td>0.321</td>
<td>-0.603</td>
<td>0.011</td>
</tr>
<tr>
<td>Ca</td>
<td>0.164</td>
<td>-0.252</td>
<td>0.046</td>
<td>0.044</td>
<td>0.745</td>
<td>0.351</td>
</tr>
<tr>
<td>Cu</td>
<td>0.242</td>
<td>0.258</td>
<td>0.828</td>
<td>0.170</td>
<td>-1.54</td>
<td>0.068</td>
</tr>
<tr>
<td>Fe</td>
<td>0.612</td>
<td>-0.099</td>
<td>0.057</td>
<td>0.642</td>
<td>0.228</td>
<td>-0.15</td>
</tr>
<tr>
<td>Mg</td>
<td>0.340</td>
<td>-0.244</td>
<td>0.524</td>
<td>0.430</td>
<td>0.108</td>
<td>0.321</td>
</tr>
<tr>
<td>Mo</td>
<td>-0.196</td>
<td>0.657</td>
<td>0.221</td>
<td>0.324</td>
<td>0.216</td>
<td>-0.237</td>
</tr>
<tr>
<td>Mn</td>
<td>0.884</td>
<td>-0.168</td>
<td>0.237</td>
<td>-0.044</td>
<td>0.170</td>
<td>0.049</td>
</tr>
<tr>
<td>P</td>
<td>-0.153</td>
<td>0.086</td>
<td>-0.029</td>
<td>0.031</td>
<td>0.186</td>
<td>0.819</td>
</tr>
<tr>
<td>Pb</td>
<td>0.644</td>
<td>0.045</td>
<td>0.021</td>
<td>0.105</td>
<td>-1.62</td>
<td>0.273</td>
</tr>
<tr>
<td>Sn</td>
<td>-0.032</td>
<td>0.906</td>
<td>0.110</td>
<td>-1.69</td>
<td>0.070</td>
<td>-0.084</td>
</tr>
<tr>
<td>W</td>
<td>0.159</td>
<td>0.529</td>
<td>0.059</td>
<td>0.591</td>
<td>-3.85</td>
<td>0.038</td>
</tr>
<tr>
<td>V</td>
<td>0.226</td>
<td>-0.096</td>
<td>0.103</td>
<td>0.821</td>
<td>-1.17</td>
<td>0.234</td>
</tr>
<tr>
<td>U</td>
<td>-0.071</td>
<td>0.919</td>
<td>0.100</td>
<td>-1.10</td>
<td>-1.01</td>
<td>0.063</td>
</tr>
<tr>
<td>Ti</td>
<td>0.197</td>
<td>-0.423</td>
<td>0.162</td>
<td>0.233</td>
<td>0.097</td>
<td>0.766</td>
</tr>
<tr>
<td>Zn</td>
<td>0.802</td>
<td>-0.087</td>
<td>0.333</td>
<td>0.255</td>
<td>-1.46</td>
<td>0.063</td>
</tr>
<tr>
<td>Ni</td>
<td>0.755</td>
<td>-0.025</td>
<td>0.276</td>
<td>0.181</td>
<td>0.415</td>
<td>-0.239</td>
</tr>
<tr>
<td>Co</td>
<td>0.910</td>
<td>-0.011</td>
<td>-0.033</td>
<td>0.079</td>
<td>0.159</td>
<td>-0.179</td>
</tr>
<tr>
<td>Cr</td>
<td>-0.044</td>
<td>-1.116</td>
<td>0.511</td>
<td>0.490</td>
<td>0.391</td>
<td>-3.34</td>
</tr>
<tr>
<td>As</td>
<td>0.047</td>
<td>0.035</td>
<td>0.011</td>
<td>0.086</td>
<td>0.743</td>
<td>0.066</td>
</tr>
</tbody>
</table>

In this study, 90 lithogeochemical samples were collected from the deposit, and analyzed by inductively coupled plasma mass spectrometry (ICP–MS) method at the Zarazma company in Iran for 56 elements. Pb, Ag, Mn, Fe, Co, Ni, V, Zn and Cu are the exploration target. Detection limits are 0.1 ppm, 5 ppm and 100 ppm for Ag, Mn and Fe, respectively and 1 ppm for Co, Ni, V, Zn, Pb and Cu. Staged factor analysis, used to determine significant geochemical signatures and elements, was classified using factor analysis by the SPSS software package. For this purpose, three steps of factor analysis were performed on geochemical data for recognizing significant multi element associations (Table 1).

In the first stage, the elements with values less than 0.6 including Mg, W and Cr were removed. The second stage of factor analysis was performed on the remaining data other than Ba, Ca, P, U, Ti, Mo, As and Sn.

<table>
<thead>
<tr>
<th>Element</th>
<th>Second stage</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.189</td>
<td>0.225</td>
<td>0.185</td>
<td>0.897</td>
<td>0.005</td>
<td>-0.009</td>
</tr>
<tr>
<td>Ba</td>
<td>0.010</td>
<td>-0.121</td>
<td>-0.701</td>
<td>-0.088</td>
<td>0.205</td>
<td>0.130</td>
</tr>
<tr>
<td>Ca</td>
<td>0.141</td>
<td>-0.243</td>
<td>0.764</td>
<td>0.014</td>
<td>0.144</td>
<td>0.328</td>
</tr>
<tr>
<td>Cu</td>
<td>0.215</td>
<td>0.185</td>
<td>-0.093</td>
<td>0.894</td>
<td>0.186</td>
<td>0.028</td>
</tr>
<tr>
<td>Fe</td>
<td>0.595</td>
<td>-0.065</td>
<td>0.170</td>
<td>0.038</td>
<td>0.720</td>
<td>-0.002</td>
</tr>
<tr>
<td>Mn</td>
<td>-0.128</td>
<td>0.772</td>
<td>0.097</td>
<td>0.139</td>
<td>0.336</td>
<td>-0.122</td>
</tr>
<tr>
<td>P</td>
<td>-0.118</td>
<td>0.106</td>
<td>0.131</td>
<td>-0.058</td>
<td>0.006</td>
<td>0.882</td>
</tr>
<tr>
<td>Pb</td>
<td>0.657</td>
<td>0.011</td>
<td>-1.98</td>
<td>0.051</td>
<td>0.054</td>
<td>0.317</td>
</tr>
<tr>
<td>Sn</td>
<td>0.1</td>
<td>0.906</td>
<td>0.049</td>
<td>0.119</td>
<td>-0.231</td>
<td>-0.057</td>
</tr>
<tr>
<td>V</td>
<td>0.162</td>
<td>-0.119</td>
<td>-1.34</td>
<td>0.157</td>
<td>0.872</td>
<td>0.167</td>
</tr>
<tr>
<td>U</td>
<td>-0.071</td>
<td>0.876</td>
<td>-1.00</td>
<td>0.174</td>
<td>-0.167</td>
<td>0.054</td>
</tr>
<tr>
<td>Ti</td>
<td>0.194</td>
<td>-0.432</td>
<td>0.089</td>
<td>0.134</td>
<td>0.239</td>
<td>0.761</td>
</tr>
<tr>
<td>Zn</td>
<td>0.817</td>
<td>-0.133</td>
<td>-0.139</td>
<td>0.327</td>
<td>0.174</td>
<td>0.075</td>
</tr>
<tr>
<td>Ni</td>
<td>0.781</td>
<td>0.028</td>
<td>0.384</td>
<td>0.189</td>
<td>0.231</td>
<td>-0.209</td>
</tr>
<tr>
<td>Co</td>
<td>0.908</td>
<td>-0.004</td>
<td>0.145</td>
<td>-0.052</td>
<td>0.118</td>
<td>-0.176</td>
</tr>
<tr>
<td>As</td>
<td>0.076</td>
<td>0.040</td>
<td>0.741</td>
<td>-0.025</td>
<td>0.047</td>
<td>0.107</td>
</tr>
</tbody>
</table>

| Element | Third stage | | | |
|---------|-------------|---|---|
| Ag | 0.165 | 0.942 | 0.080 |
| Cu | 0.141 | 0.922 | 0.030 |
| Fe | 0.720 | 0.061 | -0.071 |
| Mn | 0.033 | 0.038 | 0.900 |
| Pb | 0.213 | 0.073 | 0.834 |
| V | 0.115 | 0.105 | 0.148 |
| Zn | 0.679 | 0.323 | 0.266 |
| Ni | 0.908 | 0.250 | 0.068 |
| Co | 0.956 | 0.004 | 0.153 |

Table 1. Rotated factor matrix for three stages of staged factor analysis.
Furthermore, the third step has obtained four factors with threshold values greater than 0.6 including Fe, Co, Ni, Zn (factor1), Cu and Ag (factor2), Mn, Pb (factor3) and V (factor4). Regarding the type of mineralization, three factors (F1-3, F2-3 and F3-3) were considered.

After using staged factor analysis to identify geochemical signatures, the C-N method was utilized for determination of anomaly values on resulted factors and raw data that indicated a multifractal nature in the study area (Figs. 2 and 3). Log-log plots were generated and break points separated by straight lines, were considered as different geochemical populations. Based on C-N log-log plots, four geochemical populations were specified for F1-3, Mn and five geochemical populations were identified for F2-3, F3-3, Cu, Ag and Fe. Strong anomaly for Cu, Ag, Fe and Mn based on the C-N fractal modeling starting from 19952 ppm, 177 ppm, 63098 ppm and 6607 ppm, respectively, as depicted in Table 2.

Table 2 Anomaly values of Cu, Ag, Fe and Mn based on the C-N fractal model in the Ardestan area.

<table>
<thead>
<tr>
<th>Element</th>
<th>High background</th>
<th>Weak anomaly</th>
<th>Strong anomaly</th>
<th>Very strong anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>562</td>
<td>1000</td>
<td>7079</td>
<td>19952</td>
</tr>
<tr>
<td>Ag</td>
<td>0.63</td>
<td>3.16</td>
<td>6.3</td>
<td>177</td>
</tr>
<tr>
<td>Fe</td>
<td>28184</td>
<td>38019</td>
<td>50119</td>
<td>63098</td>
</tr>
<tr>
<td>Mn</td>
<td>631</td>
<td>4169</td>
<td>6607</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 2. Log-log plots and geochemical maps derived from C-N fractal model of Cu, Ag, Mn and Fe in the study.
Figure 2. To be continued

Figure 3. Log-log plots and geochemical maps obtained from C-N fractal model for F1-3, F2-3 and F3-3 in the study area.
The geochemical maps were constructed using ArcGIS software (Fig. 2). Based on the generated symbol maps, most of the Cu anomalies are situated in the SE, NE and NW parts of the study area in the basaltic andesite, trachyandesite and andesite rocks (Fig. 2). Strong anomaly of Ag are located in the NW and NE parts of this area in the andesites and andesitic basalts, as indicated in Fig. 2.

Strong anomaly of Fe are observed in the SE, NE, NW and western parts of the study area in the basaltic andesites and andesites. Moreover, Mn anomalies appear in the NW of the area in andesites (Fig. 2).

Strong anomaly for F1-3, F2-3 and F3-3 are situated in the NW and NE parts, NW part and NW, NE, SE of the study area (Fig. 3), respectively, where factor analysis maps show appropriate correlation with elemental geochemical maps.

Field observation

The promising metal-bearing regions derived by data processing were validated with field study and sampling. Field observation and petrographic studies indicate the study area is mainly composed of volcanic rocks including basaltic andesite, basalt, andesite, trachyandesite, rhyolite, rhyodacite, tuff, ignimbrite, and also intrusive rocks including diorite, monzodiorite and granodiorite (Figs. 4a and 5). The dominant textures of these rocks are microlithic porphyry, granular and glomeroporphyritic (Fig. 5).

The hydrothermal activities had affected volcanic, subvolcanic and intrusive rocks and created a variety of alteration in this area. Propilitic, silicic, carbonaceous, argillic and sericitic alterations are recognized in these rocks. Propylitic alteration is extensive and is observed in most locations. Sericite, epidote, chlorite, hematite, iddingsite and calcite are the most important minerals produced by alteration (Fig. 5). Iddingsite ($\text{MgFe}_2\text{Si}_3\text{O}_{10-4}(\text{H}_2\text{O})$), common product of mafic minerals, is chemically formed by entering iron and water into mafic minerals (Shelley, 1993).
Figure 4. Field photographs from the study area. (a) Views of rock units where diorite units penetrate into the andesitic basalt units (looking NE); (b) Iron and manganese mineralization in andesitic basalts (looking NE); (c) The presence of malachite and azurite in the andesite.

Figure 5. Photomicrographs of mineral assemblages and textural features of the studied rocks. (a) Plagioclase and pyroxene phenocrysts in basalts and olivine subhedral crystals which are replaced by iddingsite (XPL); (b) Trachyandesite with porphyritic texture (XPL); (c) The presence of plagioclase, amphibole and K-feldspars with granular texture in the granodiorite rock (XPL); (d) Alteration of minerals in rhyodacite to epidote (XPL); (e) Pyroxene in diorite that is replaced by chlorite (XPL) (Pl= Plagioclase; Px= Pyroxene; Amp= Amphibole; Ep= epidote; Qz= Quartz; Opq= opaque; Afs= Potassium feldspar; Ol= Olivine).
The principal gangue minerals are barite, chlorite, epidote with lesser amounts of quartz and calcite. The obtained results from mineralogic studies indicate mineralization occurs in volcanic and subvolcanic rocks and presents the two phases of mineralization in this area, sulfide minerals consisting of pyrite, chalcopyrite, argentite, chalcocite, bornite, covellite and, oxide minerals including magnetite, hematite, goethite, pyrolusite that usually exist with silica, calcite and barite vein-veinlet (Fig. 6). Styles of mineralization are massive, veins, disseminated and stockwork in this area, as depicted in Fig. 6.

Figure 6. Photomicrographs of the ore minerals in the study area. (a) Malachite with vein texture (reflected light); (b) Chalocite replaced by covellite (reflected light); (c) Pyrite with disseminated and vein texture (reflected light); (d) Massive magnetite (reflected light); (e) Bladed crystals of hematite (reflected light); (f) Pyrolusite with fine-grained and massive texture (reflected light); (g) Bornite, chalcocite and covellite in andesite; (h) Argentite, chalcocite and covellite (Mal, Malachite; Mt, Magnetite; Py, Pyrite; Cc, Chalcocite; Cov, Covellite; Hm, Hematite; Pi, Pyrolusite; Bn, Bornite; Agt, Argentite).
Iron oxides occur as magnetite and hematite in andesite and basaltic andesite with two outcrops in the SE and NW of the Ardestan area (Fig. 4b), also numerous andesite dikes with iron mineralization as hematite and goethite are observed in the western part of the study area (Fig. 7). Copper minerals mostly are observed as copper carbonates (malachite and azurite) in the andesites, trachyandesites and basaltic andesite in the NE, SE and NW part of the study area (Fig. 4c).

Conclusion

In this study, the staged factor and the C-N fractal analysis are applied to identify geochemical anomalies. Using staged factor analysis, geochemical data was categorized and indicator elements related to mineralization were determined. For this purpose, three steps of factor analysis were performed on geochemical data and based on the type of mineralization and exploration target, three factors (F1-3, F2-3 and F3-3) were extracted. The C-N model was carried out for the determination of anomaly values on cleaning factors and raw data. Based on the C-N log-log plots, four geochemical populations were specified for F1-3, Mn and five geochemical populations for F2-3, F3-3, Cu, Ag and Fe. Strong anomaly for Cu, Ag, Fe and Mn based on the C-N fractal model commence from 19952 ppm, 177 ppm, 63098 ppm and 6607 ppm, respectively. Most of the high-intensity elemental anomalies are situated in the SE, NE and NW parts of the study area. The enrichment of Cu, Fe, Ag and Mn are correlated with the volcanic units of the basaltic andesite and andesite. Results obtained from factor analysis indicate appropriate correlation with elemental distribution maps. Geological evidence including field observations, petrographic, mineralographic and alteration studies confirm the obtained results of these methods. Therefore, these methods can be considered as effective methods for geochemical anomaly separation and to determine the promising regions in the study area.

Acknowledgements

The present study was supported by the Cu-Au company of Ardestan. The authors are grateful to Mr. Sharif for providing sampling facilities and let us access to drill cores and exploration data.

References

Prospecting polymetallic mineralization in Ardestan area, Central Iran ...

