
Geopersia 8 (1), 2018, PP. 43-60                                                    DOI: 10.22059/geope.2017.228906.648302 

 
Prediction of pore facies using GMDH-type neural networks: a case 

study from the South Pars gas field, Persian Gulf basin 
 

Ebrahim Sfidari1,5, Ali Kadkhodaie2*, Behzad Ahmadi3, Bahman Ahmadi4, Mohammad Ali Faraji5 
1 Petroleum Geology research group, Research Institute of Applied Sciences, ACECR  
2 Department of Earth Science, Faculty of Natural Science, University of Tabriz, Tabriz, Iran 
3 Department of mechanical engineering, Sharif University of technology, Tehran, Iran 
4 Department of mechanical engineering, University of Guilan, Rasht 
5 Department of Geology, University College of Sciences, University of Tehran, Tehran, Iran  
*Corresponding author, e-mail: kadkhodaie_ali@tabrizu.ac.ir 

(received: 01/03/2017 ; accepted: 04/12/2017) 
 

Abstract 
Pore facies analysis plays an important role in the classification of reservoir rocks and reservoir simulation studies. The current study 
proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalan 
formations in the South Pars gas field. In the first step, pore facieswere determined based on Mercury Injection Capillary Pressure 
(MICP) data in corporation with the Hierarchical Clustering Analysis (HCA) method. Each pore facies represents a specific type of 
pore geometry indicating the interaction between the primary rock fabric and its diagenetic overprints. In the next step, polynomial 
meta-models were established based on the evolved Group Method of Data Handling (GMDH) neural networks for the purpose of pore 
facies identification from well log responses. In this way, the input data table used for training GMDH-type neural network consists of 
CALI, GR , CGR , SGR, DT, NPHI, RHOB, PEF, PHIE and VDL logs. The MICP-HCA derived pore facies were considered as the 
desired outputs. Moreover, multi-objective genetic algorithms (GAs) are used to evolutionary design of GMDH-type neural networks. 
Training error and prediction error of neural network have been considered as conflicting objectives for Pareto multi-objective 
optimization. The results of this study indicate the successful implementation of GMDH neural networks for classification of pore 
faciesin the heterogeneous gas bearing carbonate rocks of South Pars gas field. 
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Introduction 
Carbonate reservoirs are more complicated 
compared to clastic rock counterparts. At reservoir 
scale, carbonate porosity rarely follows depositional 
facies boundaries due to the extensive influence of 
diagenesis. At pore scale carbonate reservoirs may 
be very heterogeneous because they have been 
influenced by a variety of depositional and 
diagenetic processes (Ahr, 2008). Due to these 
heterogeneities, hydrocarbon storage, production 
and recovery in carbonate reservoirs is very 
complex. Pore-size is the common link between 
permeability and hydrocarbon saturation. 
Permeability models have historically described 
pore space in terms of the radius of a series of 
capillary tubes (Lucia, 2007). Kozeny (1927) 
substituted surface area of the pore space for pore 
radius and afterward, Carman (1956) developed the 
well-known Kozeny-Carman equation relating 
permeability to porosity. Pore-size distribution is 
important along with porosity in estimating 
permeability. In general, it can be concluded that 
there is no relationship between porosity and 
permeability in carbonate rocks unless thepore-size 
distribution is included (Lucia, 2007). Capillary 

pressure as thedifference in pressure across the 
interface between two phaseshas a significant role 
in oil flow. Capillary pressure curves contain 
valuable information about pore systems and are 
very useful in predicting production capacities 
(Chehrazi et al., 2011). Extracting such information 
as rock parameters and then classifying or 
clustering these parameters into various groups can 
give important details on carbonates permeability 
and production capability. Parameters such as pore 
throat radius, pore throat sorting and height above 
free water level can be derived from these curves. 
Some studies proposed Rock typing based on pore 
typing using MICP test (Kopaska-Merkel et al. 
1989; Marzouk et al., 1995; Skalinski et al., 2005) 
and nuclear magnetic resonance (NMR) T2 cutoffs 
incorporation with MICP test (Arfi et al. 2006; 
Vincent et al., 2011).Proposed pore facies based on 
pore typing using MICP test was achieved in cored 
wells. (Chehrazi et al., 2011). Pore facies prediction 
in uncored wells based on wireline logs is a 
challenging subject. In this way, porefacies is 
similar to other facies definitions.Several 
approaches have been proposed in literature for 
electrofacies (e.g. Rogers et al., 1992; Serra et al., 
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1985; Sfidari et al., 2012; Sfidari et al., 2014; 
Wolff and Pelissier -Combescure, 1982) lithofacies 
prediction (Ma et al., 2014; Perez et al., 2003; 
Saggaf & Nebrija, 2000; Tang & Ji, 2006) and pore 
facies in cored wells (Chehrazi et al., 2001). 

The main scope of this paper is porefacies 
definition at cored sections based on MICP curves 
and prediction of a set of predefined facies for 
uncored wells. In the current study, firstly, MICP 
parameters were derived and clustered by using 
HCA method and the resulting pore facies were 
then estimated from conventional well logs by using 
the GMDH-type neural networks in the South Pars 
Gas field. In this research, multi-objective genetic 
algorithms are used to optimal design of the 
generalized structure of GMDH-type (GS-GMDH) 
neural network (Jamali et al., 2009; Nariman-Zadeh 
et al., 2005) in which connectivity configuration in 
such networks is not limited to adjacent layers for 
modelling, classification and estimation in some 
applications.  

The objective functions in optimal design of GS-
GMDH are, namely, training error and prediction 
error which should be minimized simultaneously. 
Therefore, optimal Pareto set of such GMDH are 
obtained which represent the compromise between 
the objective functions. Consequently, the best 
compromise solution is selected from the Pareto 
optimal set. By this way, some input–output data 
consisting of sample parameters as inputs and pore 
facies as output are used for training such GMDH-
type neural networks. For the purpose of 
demonstrating the prediction capability of designed 
GMDH-type neural network, input–output data set 
have been divided into two separate sets, namely, 
training and testing sets. The training set which 
consists of selected input–output dataset is used for 
training the neural network using the evolutionary 
algorithms.  

The testing set which consists of remaining 
unforeseen input–output data samples during the 
training process is merely used for testing to 
demonstrate the prediction capability of such 
evolved GMDH-type neural network models during 
the training process (Jamali et al., 2013). In former 
studies, capillary pressure (Pc) derived parameters 
have been used for pore facies identification and 
interpretation of pore size characteristics so that 
they suffer severely from core data scarcity. 
However, we need to propagate reservoir pore 
facies for all logged and uncored wells. Of course, 
intelligent systems have widely been used for 

estimation of reservoir parameters (e.g. 
Kadkhodaie-Ilkhchi et al., 2009; Mohaghegh, 2005; 
Rezaee et al., 2007; Rolon et al., 2009), pore facies 
characterization is still a challenging issue. The 
current study bridges core derived pore size 
characteristics and well logging data by using 
GMDH-type NNs and it tries to estimate pore facies 
for all logged but not cored wells which will then be 
be used for the construction of reservoir static 
model. 
 
Geological setting 
The Persian Gulf basin, as one of the largest 
petroleum provinces in the world, is located 
between the Zagros belt and Arabian shield. This 
region has evolved through different tectonic 
processes, which resulted in forming numerous 
petroleum systems with the significant source, 
reservoir and cap rocks.  

The South Pars Gas Field with 441.5 tcf proved 
reserve with its Qatari extension, North Field with 
900.5 tcf gas in place is the largest non-associated 
gas field in the world. Gas accumulation in this 
field is restricted to the Upper Permian to Early 
Triassic carbonates of Kangan and Dalan 
formations which are time equivalent of Khuff 
Formation in the Arabian plate. The formations are 
related to the opening stage of the Neo-Tethys 
Ocean in the region fallowed by regional epirogenic 
movements of the Qatar Arch. (Ghazban, 2007).  

The structure of the SPGF is part of the gigantic 
NE–SW trending Qatar Arch. Its regional geology 
and reservoir characteristics is well documented in 
numerous publications (Kashfi, 1992; Alsharhan & 
Naim, 1997; Insalaco et al., 2006; Ehrenberg et al., 
2007; Rahimpour-Bonab et al., 2009). The general 
stratigraphy of the field is illustrated in Fig.1. 

The Early Silurian shales of Sarchahan and Siahu 
formations are known as source rocks of the SPGF 
(Kamali & Rezaee 2003; Aali et al., 2006). The 
hydrocarbon generation from these source rocks is 
believed to begin in the Middle Jurassic and the gas 
window established during early to Middle 
Cretaceous (Bordenave & Burwood, 1990). The 
Kangan and Dalan formations are capped by the 
Triassic age evaporites of Dashtak Formation that 
forms an efficient cap rock in the region (Fig. 1). 
These formations host part of the world's largest gas 
reservoir in the Middle East region. Limestone and 
dolomite with evaporiticseries are the main 
lithological unit in these formations and are 
interpreted as shallow-marine deposits (Kashfi, 1992). 
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Figure 1. Location map of the South Pars gas field in the Persian Gulf (left) and lithostratigraphic diagram of the studied formations 
(right) 
 

From a reservoir point of view, the Kangan and 
Dalan formations are divided into five units. K1 and 
K2 are two units of Kangan Formation (from top to 
base), while K3 to K5 are units of Dalan Formation 
(from top to base). An Anhydrite unit (Nar 
Member) divides the Dalan Formation 
stratigraphically to upper (K3 and K4) and lower 
(K5) Dalan (Figure 1; Ghazban, 2007; Szabo & 
Kheradpir, 1978). 
 
Materials and method  
Data preparation  
Core and petrophysical data from Kangan-Dalan 
(Late Permian-Early Triassic) formations of the 
South Pars Field from the Persian Gulf were chosen 
to test the methodology. Data used in this study 
come from three wells of the South Pars gas field 
(SP-A, SP-B and SP-C) and comprise a total of 670 
core porosity-permeability sets, 109 MICP curves 
and 430 thin sections from the K1, K2, K3 and K4 
units. The standard thin sections (typically ~30 μm) 
impregnating with blue epoxy resin to identifying 
pore space distribution. Identification of dolomite 
was performed colorimetrically using Alizarin Red-
S. Parameterization of the MICP curves with the 
aim of clustering and pore facies analysis was 
carried out. The hierarchical cluster analysis method 
method was applied to clustering the PC curves into 
distinct pore facies. Based on core plug thin-
sections, the primary depositional facies and its 

diagenetic overprints for each pore facieswere 
determined. In addition, a complete set of well logs 
including, caliper (CALI), gamma ray (GR), 
computed gamma ray (CGR), standard gamma 
ray(SGR), acoustic transmit-time (DT), neutron 
(NPHI), density (RHOB), photoelectric log (PEF), 
effective porosity (PHIE) and velocity deviation log 
(VDL) were available for three wells of the study 
area. Finally, the GMDH-type (GS-GMDH) neural 
networks were used to extract pore facies from well 
log responses. Initially, CALI, GR, CGR, SGR, DT, 
NPHI, RHOB, PEF, PHIE and VDL logs were 
considered as inputs and pore faciesas the output of 
the GMDH-NN model to establish a relationship 
between wireline logs and a set of predefined pore 
facies which were determined based on clustering 
of MICP extracted parameters. 
 
MICP parameter extraction  
Some of the extracted attributes on which the pore 
facies analysis has been applied are described 
below. 

Pore throat radius can be calculated by using 
capillary pressure equation (Eq.1) at any capillary 
pressure.  

           (1) 
Where  is pore throat size in micron,  is mercury 
interfacial tension in air in dyn/cm,  is the contact 
angle between mercury and air in degree and  is 
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the capillary pressure in kPa. 
Height above Free Water Level (HAFWL) 

directly determines the boundary from which 
hydrocarbons saturation increases upward. In 
reservoir conditions, capillary pressure controls the 
initial hydrocarbon distribution as a function of 
Height above Free Water Level (HAFWL). Using 
this principle, the column above zero capillary 
pressure (free water level) can be determined. The 
height above free water level is calculated as 
follows. 

          (2) 
Where, H is height above free water level (m), PC 
is the capillary pressure in kPa, are 
water and hydrocarbon densities under reservoir 
conditions, respectively. As seen in the formula, 
there is a direct relation between capillary pressure 
and hydrocarbon column height. 

Swanson’s Parameter (SP) is a point in mercury 
injection presenting the throats which are 
continuous and plays the main role in fluid flow. 
Swanson (1981) recognized this point using a cross 
plot of mercury saturation against the ratio of 
mercury saturation to injection pressure. The curve 
maximum point indicates the least pressure values 
for injecting the mercury and consequently the 
Swanson’s parameter. As mentioned, visionary 
methods are usually applied to determine this 
parameter from introduced cross plot. 

Pore Throat Sorting (PTS) is mostly applied to 
calculate and qualify the geometry and sorting of 
reservoir units throats (Jennings, 1987). Different 
equations are introduced to calculate PTS. One of 
these equations applies capillary pressure of first 
(25% mercury saturation) and third (75% mercury 
saturation) quartile pressure of MICP curve (Trask, 
1932). 

           (3) 
Where,  is capillary pressure in 75% mercury 
saturation and  is capillary pressure in 25% 
mercury saturation. 

This formula only covers half of capillary 
pressures and ignores the trails of the curve. Eq. (4) 
has a better data coverage, yields more 
comprehensive results and uses the capillary 
pressures in 16%, 50% and 84% mercury 
saturations (Chehrazi et al., 2011): 

      (4) 
As PTS increases, the pore throats sorting and 
quality decrease and much more injection pressures 
must be applied to intrude the mercury into porous 
network. 

Pore Throat Size Distribution (PTSD) is a very 
valuable parameter in the studies about structure 
and characteristics of pore spaces. This parameter is 
presented in a graph which is composed of pore 
throat radius versus normalized pore throat size 
distribution (PTSD) function. To achieve such a 
graph, first a plot of mercury saturated pore volume 
fraction (V) versus pore throat size must be 
constructed, then, the differential of this graph 
results in PTSD function. Now, the function results 
a range from 1 to 0 for all pore throat radii. 
Designed PTSD graph also yields the most frequent 
radius and the porous network sorting. Eq. (5) is 
applied to organize the PTSD graph. 

           (5) 
Where  is the mercury saturated pore volume and 

 is pore throat size in micron. 
Reservoir Quality Index (RQI) is an important 

parameter for assessment of reservoir quality based 
on the routine core analysis (RCAL) data. Reservoir 
quality index is the estimation of the average 
hydraulic radius of the reservoir rock. RQI is the 
particular parameter to determine the flow zone 
indicator and link the porosity, permeability and 
capillary pressure together. 

Flow Zone Indicator (FZI) is the main parameter 
to introduce Hydraulic Flow Units HFUs, which is 
defined based on the reservoir quality index (RQI) 
and normalized porosity  (Amafule et al., 1993). 
These parameters must have the most resemblance 
in categorized units to be able to separate the units 
according to their flow attitude (Amafule et al., 
1993; Ebanks, 1987; Soto and Garcia, 2001). Flow 
zone indicator (FZI) and RQI are linked as follows: 

       (6) 
 
Cluster analysis 
Cluster analysis is spread to classify a dataset into 
groups or distinct clusters of data. Clusters are 
formed in such ways that are internally 
homogeneous and externally isolated. Many 
algorithms have been reported in literature among 
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them Hierarchical Clustering analysis which is used 
in this study. This method consists of following 
steps (Sfidari et al., 2012). 
1. Calculating the similarity or distance between 
each two individual data. Particularly, the similarity 
between two sample vectors is measured based on 
the distance. Many algorithms have been developed 
to calculate this parameter among which Euclidean 
is popular (Eq 7). 

       (7) 
where,  and  are the j-th object in clusters r 
and s, respectively. 
2. Linking the objects together until one cluster 
remains 
At first, each object is considered as its own cluster. 
By having similarity or distances between different 
variables, a combination rule is needed to link 
objects together and form a union cluster. Various 
algorithms exist as, single linkage, complete 
linkage, average linkage, median linkage and Ward 
linkage  

           (8) 
where, nr and ns are the number of objects in 
clusters r and s, respectively. Moreover, 

are the centroids of clusters r and s. 
3. Finding where to put the hierarchical tree into 
clusters.  

In this step, a clustering tree is constructed using 
the information resulting from data connection 
degree which places them into associated classes. 
After constructing the dendrogram we can analyze 
it to select the optimum number of clusters for the 
dataset by selection of a suitable level of the cutoff. 
This methodology, i.e. Hierarchical Clustering 
Analysis (HCA), is developed for the purpose of 
clustering dominant pore facieshidden in the 
reservoir.  
 
GMDH type neural networks  
Group method of data handling (GMDH) is a family 
family of inductive algorithms for mathematical 
modeling of multi-parametric datasets that present 
fully automatic structural and parametric 
optimization of models. By means of the GMDH 
algorithm, a model can be represented as a set of 
neurons in which different pairs of them in each 
layer are connected through a quadratic polynomial 

and, thus, produce new neurons in the next layer. 
Such representation can be used in modeling to map 
inputs to outputs. The GMDH-type neural networks 
can organize the optimum multilayered neural 
network architecture by using the heuristic self-
organization method. In each layer, numerous 
intermediate variables are combined with each other 
to generate the optimum neuron architectures. The 
intermediate variables are the outputs of the 
previous layer. In order to map inputs to outputs in 
modeling applications, such representation can thus 
be useful. 

Therefore, minimizing the square of the 
differences between the actual output and the 
predicted one is the main problem to determine a 
GMDH type neural network. , There are many 
different possible ways to achieve this goal. The 
most popular connective function between the 
inputs and the output variables used in GMDH is 
the gradually complicated Kolmogorov-Gabor 
polynomial or Volterra series (Farlow, 1984) which 
can be expressed in the form of (9) 

  
   (9) 

A system of quadratic polynomials represents this 
full form of mathematical explanation by only two 
variables (neurons) in the form of 

 
 (10) 

Developing the general mathematical connection 
between inputs and output variables given in (9) has 
been a crucial step in the present study and 
quadratic description was recursively applied in a 
network of connected neurons to achieve this aim. 
The differences between real output and predicted 
one for all input variables are minimized by 
applying the regression techniques (Farlow, 1984; 
Iba et al., 1996; Ivakhnenko, 1971) for computing 
the coefficients ai in (10). 

The General Structure of GMDH-type neural 
network (GS-GMDH) has been proposed in 
literature by many authors (Farlow, 1984; Iba et al., 
1996; Ivakhnenko, 1971; Jamali et al., 2009; 
Nariman-Zadeh et al., 2003) and is used in this 
work for the purpose of identification and analysis 
of pore facies. Also, genetic algorithm (GA) is 
deployed for optimal design of connectivity 
configuration of such GMDH-type networks and 
simultaneously, the values of coefficients of 
quadratic sub-expressions are determined by using 
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Singular Value Decomposition (SVD). 
Training error and prediction error of GMDH-

type network are considered as conflicting objective 
in Pareto optimization process. To construct a multi-
objective optimal plan for the generalized structure 
of theGMDH-type neural network, a multi-objective 
Uniform-Diversity Genetic Algorithm procedure 
(MUGA) (Jamali et al., 2008; Jamali et al., 2010; 
Nariman-Zadeh et al., 2010) is applied and handled 
in this study. More detailed description of MUGA is 
reported in (Jamali et al., 2008; Jamali et al., 2010; 
Nariman-Zadeh et al., 2010). 

 
Pore facies determination  
The Figure 2 exhibits porosity, permeability, and 
109 MICP curves from 3 wells in the South Pars 
Gas Field. A wide range of porosity and 
permeability with different reservoir quality and 
MICP curves can be seen in this figure. Since awide 
range of the capillary pressure via water saturation 
is covered in MICP curves, the classification of 
these curves using graphical examination solely is 
almost impossible. However, the MICP extracted 
parameters can be classified into a number of 
particular pore faciesby application of the clustering 
methods. Cross-plots of various extracted parameter 
from MICP curves versus permeability are 
displayed in Figure 3 and Figure 4. Cross-plot of 
porosity versus permeability for the studied 
reservoir is displayed in Figure 4. As expected, the 
correlation coefficient between permeability and 
extracted MICP parameters is much larger than that 
of porosity. Among the all MICP extracted 
parameters, R35 shows a higher correlation with 
permeability (R2=0.57) (Lucia, 2007), while 

Swanson parameter is associated with the lowest 
correlation as high as 0.24. Moreover, reservoir 
quality index (RQI) and flow zone indicator (FZI) 
were evaluated from the result of routine core 
analysis including porosity and permeability of the 
109 core samples. The correlation of the FZI and 
RQI with permeability is shown in Figure 4 which 
evidences a good dependence between permeability 
and RQI/FZI data (Lucia, 2007).  

In the current study, pore facieswere analyzed 
through performing clustering analysis of MICP 
extracted parameters along with porosity, 
permeability, RQI and FZI data. At first step, the 
distance between all objects (109 objects) was 
calculated by applying a suitable distance calculation 
function (Euclidean distance). Then, various 
possibilities have been applied for linking the objects 
based on the result of the distance matrix and 
comparing the result of these possibilities with 
another. Finally, the ward method (Ward, 1963) has 
been selected as afinal method for linking the objects. 
As seen from the extracted dendrogram of Figure 5, 
the optimum number of clusters can be identified by 
selecting a suitable cut-off level. Accordingly, five 
pore facies were defined based on the dendrogram 
model. The results of the pore facies analysis 
including the average values of the extracted 
parameters within each pore facies along with 
permeability, porosity, RQI and FZI are presented in 
Table 1 and Figure 6.MICP curves provide pore 
throat sorting. Well-connected pore system along 
with good to very good pore throat sorting reflected 
from mercury injection capillary pressure curves 
which have lowest displacement pressure and a 
broad plateau from the low capillary pressure. 

 

 
Figure 2. MICP curves from three wells (left), porosity vs.permeability cross-plot of the samples (right). 
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Table 1. Pore facies clustering results. The average value of the extracted parameters from MICP curves along with porosity and 
permeability, RQI and FZI in each pore faciesare displayed. 

Permeability Porosity FZI RQI H_Pc_50 PTS SP R84 R50 R35 R15  

241.25 0.204 3.4 0.83 504.92 6.17 23.24 1.00 6.33 8.31 11.28 Pore Facies_1 

22.39 0.205 1.22 0.28 1548.63 2.4 11.98 0.49 1.71 2.68 4.99 Pore Facies_2 

12.83 0.193 1.11 0.21 6153.53 1.47 13.20 0.19 0.86 1.32 3.37 Pore Facies_3 

9.28 0.190 0.86 0.19 23321.29 1.58 12.71 0.12 0.52 1.23 3.88 Pore Facies_4 

6.43 0.220 0.67 0.17 31086.78 0.32 15 0.04 0.12 0.24 0.80 Pore Facies_5 

 

 

Figure 3. Correlation of the extracted parameters from MICP with permeability. Pore throat radius at equivalent pressure of 15% 
mercury saturation (A), 35% mercury saturation (B), 50% mercury saturation (C) and 84% mercury saturation (D). Correlation of the 
permeability with PTS (E) and permeability with Swanson (F) 
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Figure 4. Correlation of the permeability with extracted parameters from MICP and petrophysical data. Correlation of the height above 
free water level at 50% mercury saturation with permeability (A), correlation of porosity and permeability (B), RQI via permeability 
(C) and FZI against permeability (D) 
 

 

Figure 5. Dendrogram extracted from MICP parameterization data by using HCA method. 
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Smaller pore throats result in an increase in the 
slope of the MICP curves. It requires higher 
pressure for fluid movement among them and 
finally, it decreases the ability of a pore system 
to conduct fluids. Depositional facies and 
subsequent diagenetic over print controlled the 
pore system and shape of the MICP curves in the 
studied carbonate rocks. The main characteristics of 

each pore facies are interpreted as follows. 
Pore facies1: Table 1 shows the petrophysical 

parameters and pore geometry specifications for each 
particular pore facies. From this table, we can conclude 
that pore facies1 has best reservoir quality among the five 
pore facies. Figure 7a-b points out low displacement 
pressure in this pore facieswhich along with flat plateau 
in low-pressure exhibit good pore system connectivity. 

 

 
Figure 6. Distribution of input variables used for the clustering with permeability in the each pore facies. 
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Figure 7.Clustered MICP curves in the five distinct pore facies. Facies 1 (A, B); facies 2 (C, D); facies 3 (E, F); facies 4 (G, H); facies 5 
(I, J). 
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The interesting observation for this facies is that 
good porosity with large pore throats explains high 
permeability. These illustrations indicate highest 
reservoir quality of this facies related to the other 
ones. The rock fabric and petrographic properties of 
this facies are shown in Figure 8a and Figure 9a. 
Porous and permeable compacted coarse-grained 

well-sorted peloidal grainstone with well-connected 
interparticle porosity typical of this pore facies. The 
main diagenetic overprints are secondary 
dolomitization and micritization. The main pore type 
observed in this pore faciesis the antiparticle porosity 
(Figure 8a and Figure 9a). 

 

 
Figure 8. Core slab from the five pore faciesin this study. (a) Coarse-grained skeletal ooidgrainstonewith fining upward forests, skeletal 
debris is present at the bottom. Ooid shoal setting. (b) Dolomitized cross-bedded peloid/ooidgrainstone with dolomitic cement, sparse 
moldic porosity. Ooid shoal facies. (c) Dolomitic skeletal wackestone to packstone, porefilling anhydrite is visible. Lagoonal facies. (d) 
Dolomitic light cream laminated mudstone with pervasive evaporate casts, stylolite is present. Hypersaline lagoonal facies.Oncoid/ooid 
grainstone with significant moldic porosity at the top and peloidal wackestone to packstone at the bottom, coarsening upward.Lagoonal 
shoal margin setting (e). 



54 Sfidari et al.        Geopersia, 8 (1), 2018 

 
Figure 9. Rock fabric and pore type of the pore facies1, 2, 3, 4 and 5. (a) Coarse-grained well-sorted peloidal grainstone with well-
connected interparticle porosity; (b) Well-sorted medium grained moldicooiddolo grainstone. Interparticle pore space was filled with 
euhedral dolomite cement; (c) Dolomitic peloid wackestone with patchy pore-filling anhydrite. Intercrystalline pore type dominates; (d) 
Bioturbated skeletal and oolitic wackestone with dolomite moldic, vuggy and microporosity; (e) Ooid-peloidal dolograinstone with 
main moldicpore type.  
 

Pore facies2: the average porosity and 
permeability in pore facies2 are 20% and 22.39 mD, 
respectively. A platy and flat curve between 10% 
and 80% saturations demonstrate a uniform pore 
throat sorting and distribution. PTSD curves are 
leptokurtic, suggesting anunimodal distribution and 
a good pore throat sorting (Figure 7c-d). The 

dominant pore throat radius ranges from 1 to 8 µm. 
Well-sorted medium grained moldicooiddolo-
grainstoneis characteristic of this pore facies. 
Interparticle pore space was filled with euhedral 
dolomite cement, with significant intercrystalline 
porosity. Large moldic pores are connected through 
the seintercrystalline pores, which display smaller 
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throat radii than the interparticle pores of pore 
facies1. Graphical illustrations are shown in 
Figure7, 8b and 9b. 

Pore facies3: In comparison with pore facies 1 
and 2 it indicatesa smaller and less well-sorted pore 
throat system (Figure 7e-f). The PTSD curves are 
leptokurtic. The pore throat radius at 80% of the 
pore volume are located between 0.1 and 6 µm with 
anaverage of 1 µm. Dolomitic peloidwackestone 
with patchy pore-filling anhydrite is the main rock 
fabric in porefacies3. As seen in Figure 8c and 
Figure 9c, intercrystalline pore-type dominates. The 
average permeability and porosity are 12.83 md and 
19% respectively.  

Pore facies4: In comparison with the pore 
facies1, 2 and 3 there is no flat plateau portion in 
the MICP curves in this pore facies. PTSD curves 
show polymodal and platykurtic distribution which 
indicates a wide range of pore throat radius values 
and unsorted pore throat system. The pore throat 
radius is less than 1 μm in 90% of the pore 
volume.Bioturbated skeletal and ooliticwackestone 
are representative of this facies. The dominant pore 
types are moldic and meso-microporosity (Figure 
8d and Figure 9d). ). As indicated by MICP curves, 
molds are connected through microporosity or 
mesoporosity.Also, these characteristics along with 
the average permeability and other petrophysical 
parameters assigned to this facies indicate a 
relatively poorer reservoir quality in comparison to 
porefacies1, 2 and 3 (Figure 7g-h). The average 
permeability and porosity are 9.28 md and 19%, 
respectively. 

Pore facies5: No flat plateau, sloping and low 
displacement pressure on the MICP curves are the 
main characteristic in this pore facies. A polymodal 
and very poorly sorted pore system reflected from 
platykurtic PTSD curves. More than 90% of pore 
throat radius ranges from 0.1 to 8µm with an 
average of 0.7 µm in this facies (Figure 7i-j). Ooid-
peloidal dolograinstoneis the typical facies. 
Interparticle pores are totally plugged by calcite 
cement preventing from significant compaction. 
Mold is the main pore type, but mouldicpores are 
mostly isolated by the interparticle cement, with the 
only minor small-sized connection when former 
dissolved grains where in contact after mechanical 
compaction (Figure 8e and Figure 9e). Average 
permeability and porosity are 9.28 md and 19%, 
respectively. As a result, the reservoir quality of this 
pore facies is ranked as fifth in the current 
classification. 

Pore facies prediction  
In this paper, the GMDH-type neural networks were 
used for the purpose of pore facies identification 
from well log responses. In order to build a 
polynomial meta-model by using the GMDH-type 
neural net, a total number of 109 input–output 
dataset were used. Ten petrophysical parameters 
including CALI, GR, CGR, SGR, DT, NPHI, 
RHOB, PEF, Effective PHI and VDL were 
considered as inputs and the corresponding pore 
facieswere predicted by GMDH neural nets. Input 
and output data of designed neural network were 
categorized into two separate sets (train and test) to 
visualize the prediction accuracy of the structured 
GMDH-type neural networks. The training set 
which consists of selected 76 samples out of 109 
input–output data pairs are used for training the 
neural network models by using MUGA. The 
testing set which includes remaining 33 
unanticipated inputs–output data samples during the 
training process, is exclusively used for testing to 
demonstrate the prediction capability of such 
evolved GMDH-type neural network models. 

Training error and prediction error as 
optimization criteria were considered in a Pareto 
optimization procedure to obtain some important 
trade-offs among these conflicting criteria. The 
optimization procedure is performed by using 
MUGA. A population size of 70 and generation 
number of 350 was chosen with crossover 
probability and mutation probability as 0.90 and 
0.03, respectively. Consequently, a total number of 
5 non-dominated optimum design points as non-
dominated optimum neural network models have 
been obtained and shown in Figure 10 in the plane 
of objective functions. 

As Figure 10 presents, every optimum design 
point of the Pareto front is non-dominant and is 
applicable for configuration of the favourable 
optimal GMDH-type neural network. Obviously, in 
the Pareto front, choosing a better value for any 
criterion would cause a worse value for another 
criterion. It is now desired to find a trade-off 
optimum design point compromising both 
objectives. Design point marked by an arrow in 
Figure 10 representing a GMDH-type neural 
network model can be optimally chosen from a 
trade-off standpoint for optimization criteria. 

Hence, the designed structure of the evolved 2-
hidden layer GMDH-type neural network is 
depicted in Figure 11.According to Figure 11, 
among the ten input parameters, there are only six 
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ones namely; GR, DT, NPHI, RHOB, Effective PHI 
and VDL appearing in GMDH model. Thus, it can 
be concluded that the other four parameters of 
CALI, CGR, SGR and PEF do not affect the 

classification process. 
The recursive polynomial representations of such 

model are given by equations (11): 

 

 
 

 

Figure 10.Pareto front of Training error and Prediction error 
 

The accuracy of GMDH model in both training 
error and prediction error is demonstrated in Figure 
12. It is clear from this figure that the proposed 
meta-modelling GMDH-type neural network of this 
work notably provides fair estimation and 
prediction capability in the scope of classification 
application. Also, it is clearly obvious that the 
evolved GMDH-type neural network in form of 
simple polynomial equations can successfully 
model and predict the output of testing data. The 
optimized neural network provides nearly 84% 

precision in prediction ability for whole data. In the 
light of the acceptable results of the GMDH type 
network models, the model with selected 
parameters from cross-validation and model testing 
was then used for porefacies prediction in the un-
cored wells. The outcomes were found in a good 
performance with reliable prediction effectiveness 
of the Neural Network classification (Table 2). 
Figure 13 illustrates a predicted final pore facies in 
the well scale along with the input well log and 
porosity-permeability data. 
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Confusion 
matrix 

predicted litho-facies 
Absolute 
accuracy 

1 2 3 4 5 Grand Total 

Actual 
facies 

1 3 1 0 0 0 4 100 
2 0 5 0 1 0 6 83.33 
3 0 0 4 0 1 5 100 
4 0 0 0 4 0 4 83.33 
5 0 0 0 0 4 4 80 

Grand Total 3 6 4 5 5 23 80 
Proportion 
percent (%) 

75% 100 80% 125% 125%  
Absolute 
accuracy 

 difference 0 1 0 1 1 3 87.500 

 

 
Figure 11. Evolved structure of generalized GMDH neural network 

 

 

Figure 12. Precision of proposed GMDH-type neural network meta-model 
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Figure 13. Correlation of the predicted final pore facies in the well scale along with the input well log and porosity-permeability data 

 
Conclusion 
Pore faciesanalysis plays an important role in the 
classification of reservoir rocks especially in a 
carbonate reservoir. In this study, a method is 
proposed for pore facies determination based on 
statistical clustering and neural network 
classification on mercury injection capillary 
pressure curves, core porosity and permeability data 
and petrographic and well logs data. Hierarchical 
clustering analysis method was used for clustering 
of the pore faciesfrom a set of predefined MICP 

data. Five pore faciesbased on the dendrogram tree 
were identified, these facies being Representative of 
rocks with different pore geometry, depositional 
fabrics, diagenetic histories and specific porosity 
type. Reservoir quality decreases from pore facies1 
to pore facies5. Evolutionary methods for designing 
GMDH-type networks were proposed and 
successfully used for prediction of pore facies from 
well log parameters. In this way, it has been shown 
that GMDH-type networks provide effective means 
for classification of pore facies. 
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