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Abstract 
Possibility of mapping the distribution of Arsenic and Chromium in a mining area was investigated using combination of (VNIR) 
reflectance spectroscopy and geostatistical analysis. Fifty five soil samples were gathered from a waste dump at Sarcheshmeh copper 
mine and VNIR reflectance spectra were measured in a laboratory. Savitzky- Golay first derivative was used as the main pre-processing 
method before developing Genetic Algorithm Partial Least Squares Regression (GA-PLSR) and PLSR models for predicting toxic 
elements concentrations. Physicochemical mechanism that allows the prediction with reflectance spectroscopy was also investigated 
and it was found that, elements sorption by spectrally active Fe and clay contents of soil was the major mechanism helping the 
prediction of spectrally featureless As and Cr. Positive relationships were observed between performance of predicting models and iron 
and clay contents of the samples. Comparing to PLSR, higher prediction performances of both toxic elements concentrations were 
obtained by applying GA-PLSR model. Furthermore, similar spatial patterns for soil pollution hotspots were observed by geostatistical 
interpolation (kriging) of chemically measured and models’ predicted values. Results demonstrated that the amount and spatial 
variability of arsenic and chromium can be determined using VNIR spectroscopy and geostatistics in Sarcheshmeh mine’s waste dump. 
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Introduction 
Exposure to hazardous materials resulting from 
industrial and mining activities, urban disposal and 
incidental accumulations is one of the most critical 
environmental challenges facing human and 
ecological communities (Shi et al., 2014). Due to 
their persistent nature and long biological half-lives, 
high levels of toxic elements do not only denudes 
the soil health, but can affect the food chain, 
causing significant harm to human health and the 
long-term sustainability of the local ecosystem 
(Chakraborty et al., 2015; Gholizadeh et al., 2015). 

Amount, type and spatial distribution of toxic 
elements in the soil have to be accurately 
determined before planning for expensive and time 
consuming remediation processes (Mulligan et al., 
2001; Lewandowski et al., 2006). Spatial 
distribution has a great importance and 
conventionally is investigated based on collecting 
numerous soil samples in field and extensive 
chemical analysis in laboratory (Cattle et al., 2002; 
Motelay-Massei et al., 2004; Horta et al., 2015). 
Although chemical methods are accurate and well 
documented by the literatures, they are expensive, 
laborious and time intensive while needing 
chemical agents and qualified staff. Developing 

quick, inexpensive and precise alternative 
measurement methods is of great interest by the 
researchers.  

As a feasible technique in both laboratory and in 
situ conditions (Rossel et al., 2006), Visible and 
Near-Infrared (VNIR) reflectance spectroscopy is a 
rapid and non-invasive analysis technique which 
needs less sample preparation (only drying and 
crushing), minimal reagent consumption (McCarty 
et al., 2002) and several soil attributes can be 
estimated from a single spectrum (McBratney et al., 
2006). It has been used for predicting, spatial 
analysis and mapping the spectrally active 
properties of soil samples such as moisture (Gill et 
al., 2006), organic matter (Conforti et al., 2015), 
clay (Gomez et al., 2008; Nawar et al., 2016), Fe 
(Hong-Yan et al., 2009), carbonate and salt content 
(Ben-Dor and Banin, 1990; Farifteh et al., 2007). 

It deems to be possible to monitor and predict the 
toxic element concentration in sediments and soils 
since they can be absorbed or bound by above 
mentioned spectrally active constituents. Wu and 
colleagues investigated the possibility of predicting 
Ni, Cr, Cu, Hg, Pb, Zn in suburban soil using PLSR 
approach associated with reflectance spectra (Wu et 
al., 2005). They also conducted a research with the 
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aim of exploring the physicochemical mechanism 
helping estimation of heavy metals using 
reflectance spectroscopy (Wu et al., 2007).  

The spectra of soil might be broad and non-
specific mainly owing to overlapping of soil 
properties (Rossel and Behrens, 2010). In order to 
overcome the problem, the spectral characteristics 
are analyzed using some chemometric methods 
(Martens and Naes, 1992). Partial least squares 
regression (PLSR) (Rossel and Behrens, 2010; 
Araújo et al., 2014; Adeline et al., 2017), support 
vector machine (SVM) (Araújo et al., 2014; 
Gholizadeh et al., 2015), principal component 
analysis (PCA) (Rossel and Behrens, 2010), 
principal components regression (PCR) 
(Chakraborty et al., 2015), stepwise multiple linear 
regression (SMLR) (Vasques et al., 2008; Shi et al., 
2013) and random forest (RF) (Wijewardane et al., 
2016; Chakraborty et al., 2017) are some of the 
most preferred methods among researchers to 
characterize spectra and develop models for 
predicting the elemental content of the soil. 

Some publications have already focused on the 
spectral-based estimation of toxic elements in soils 
and water polluted by mining activities. Most of 
them were devoted to study on homogeneous areas 
like sediments of mine sites (Choe et al., 2008), 
agricultural soils around mining areas and croplands 
beside mines (Hong-Yan et al., 2009; Zhuang, 
2009), areas being contaminated after a mining 
accident (Kemper and Sommer, 2002), areas around 
abandoned mines (Choe et al., 2009; Shamsoddini 
et al., 2014), reclaimed mining areas (Wu et al., 
2011) and soil profiles near large copper smelters 
(Xian-Li et al., 2012). 

Mine waste dumps have high mineralogical, 
physical and geochemical heterogeneity. Little 
studies have been carried out on heterogeneous 
mining environments like dump site soils. For 
instance, Gholizadeh et al. (2015) evaluated the 
suitability of reflectance spectroscopy for predicting 
concentrations of potentially toxic elements on 
brown coal mine dumpsites in the Czech Republic 
using partial least square regression and support 
vector machine. In another study, Gannouni et al. 
(2012) reported the potential use of reflectance 
spectroscopy in identifying Fe and clay minerals as 
well as quantitative characterization of toxic metals 
including Mn, Pb, Zn, Ni, Cr, Fe, Cu, and Cd for 
the mine waste of Jalta and Bougrine in the North 
of Tunisia.  

However, based on our reviews, no reports have 

been published to date on study of the metal sulfide 
mines waste dumps by spectroscopy. Accelerated 
interactions of certain dumped sulfide minerals (of 
which pyrite is the most abundant) with water and 
oxygen, produce acidic sulfur-rich wastewaters, 
called acid mine drainage (AMD). Such effluents 
pose serious environmental damages by the fact that 
they often contain elevated dissolved toxic elements 
including metals and metalloids. Flowing and 
increasing pH and salinity of AMD could 
precipitate toxic elements and inflict environmental 
hazards to water, sediments and soils of vicinal 
areas. 

Sarcheshmeh is one of the most typical sulfide 
mines in Iran producing over 400 million tons of 
mining wastes per year. Acid mine drainage 
resulted from mining wastes and tailings are 
discharge directly into the environment causing 
migration of heavy metals to surrounding regions. 
In this case study, soil Arsenic and Chromium 
pollution on a waste dump of Sarcheshmeh copper 
mine was estimated using VNIR technique. Our 
objectives were as follows: i) Reveal the binding 
mechanism by which to predict toxic elements 
using spectrally active properties, like aluminum 
oxide (Al2O3) representing clay minerals and iron 
oxides (Fe2O3), ii) identify the effect of GA on 
PLSR calibration method by comparing the 
estimation accuracy of soil As and Cr content; and 
iii) Obtaining the spatial distribution and pollution 
hotspots of As and Cr at regional scale using VNIR 
and geostatistics.  
 
Materials and methods 
Study area 
The mining area of Sarcheshmeh which is situated 
160 Km southwest of Kerman city, Kerman 
province, Iran was selected as the study area (Fig. 
1). Sarcheshmeh is the biggest porphyry copper 
mine in Iran and one of the largest Oligo-Miocene 
deposits in the world. The area has a moderate 
climate with an annual average rainfall of about 450 
mm mostly in winter (Ghaderian and Ravandi, 
2012). As a complex intrusive body, the 
Sarcheshmeh stock has an outcrop of about 1.1 × 
2.2 km and consists of three different igneous 
phases, including diorite/granodiorite, dacitic and 
related porphyries, and andesite and related dikes 
(Tahmasebi & Hezarkhani, 2010). 

The oval-shaped ore body has dimensions of 
2,000 m by 900 m containing 1,200 million tons of 
ore with average grades copper, molybdenum, 
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silver and gold of 1.13 %, 0.03 %, 3.9 and 0.11 
ppm, respectively (Waterman & Hamilton, 1975). 
Chalcopyrite, Covellite, Chalcocite, Molybdenite 
and Bornite are some of the main sulfide minerals 
of this deposit while Pyrite – the main acid 

producing source- is the main gangue mineral. 
More than 35 years of open pit mining has 
generated 31 active and inactive waste dumps in the 
vicinity of the mine site with environmental 
concerns surrounding them. 

 

 
Figure 1. Study area a: In Iran. b) In Kerman province. c: In Sarcheshmeh copper complex. d: Dump number 31. e: A view from part of 
of the dump surface 
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Sampling and analysis 
Waste dump number 31 locating at the north eastern 
part of the main pit was the sampling site in this 
study. (Fig. 1). Fifty five topsoil samples were 
collected from the dump surface while using a 
global positioning system (GPS) to record the 
longitude and latitude of the sampling locations. 
After air drying at 40 °C, collected samples were 
screened through a 2 mm sieve to remove stones 
and coarse fragments before analysis. samples were 
then ground to 80-mesh size (200 µm) to minimize 
the impacts of particle-size on soil spectral 
reflectance (Niazi et al., 2015). Each soil sample 
was split into two subsamples. One part was used 
for spectroscopic measurements and the other for 
investigating soil chemical properties. 
 
Chemical methods 
Chemical analysis subsamples were subjected to a 
variety of chemical analyses. Inductively Coupled 
Plasma Mass Spectrometry (ICP-MS) method was 
used to measure concentrations of arsenic and 
chromium at the LabWest Minerals Analysis Pty 
Ltd., Australia. Spectrally active properties were 
evaluated by X-ray diffraction for iron oxides 
(Fe2O3) and aluminum oxide (Al2O3), representing 
clay minerals, at Iran Mineral Processing Research 
Centre (IMPRC). For each sample, the 
measurement of pH was carried out using a pH 
electrode inserted in the slurry containing 50 g of 
soil in 50 ml of distilled water.  
 
Spectroscopic measurements 
Before spectral measurements, samples were 
ground to sieve through a 0.2 mm sieve and then 
oven-dried at 105 °C overnight. Reflectance spectra 
of the soil samples were recorded using an 
Analytical Spectral Device (ASD) Fieldspec® 3 
portable spectroradiometer (Analytical Spectral 
Devices, Inc., USA) in a laboratory. It covers a 
spectral range of 350–2500 nm and collects data at 
10 scans per second. The soil samples were poured 
in a glass dish with the height and diameter of 2 and 
10 cm, respectively (Mouazen et al., 2010). The 
reflectance of each sample relative to a white 
BaSO4 panel was then entered directly onto a laptop 
for three times. Average of the measurements was 
calculated and used as the final spectrum for pre-
processing and constructing models.  
 
Chemical and spectral Preprocessing 
Normality of soil Attributes concentration was 

assessed based on Kolmogorov–Smirnov statistical 
test at the 5% significance level. Data which did not 
meet the requirements of a normal distribution were 
subjected to logarithm transformation.  

Prior to the chemometrics analysis, signal to 
noise ratio was improved by removing the spectral 
ranges of 350–399 nm and 2451–2500 nm from the 
measured spectra. For the purpose of reducing the 
nonlinearities and scattering effects, remaining 
reflectance spectra were transformed into the 
absorbance (log10 (1/R), R is reflectance) (Conforti 
et al., 2015). In order to remove the baseline shift 
effect, the absorbance spectra were then subjected 
to the Savitzky–Golay first derivative calculated by 
fitting a first order polynomial to a spectral window 
size of 7 data points. Applying multiplicative scatter 
correction was not necessary due to homogeneous 
and fine-grained structure of soil samples which 
attenuated the multiplicative scatter effects. First 
derivative absorbance spectra were PCA 
transformed with a varimax rotation using R 
software version 3.1.0 (R Core Team, 2014). The 
score plot of the first three PCs was provided to 
show the relation between data. Data points lying 
far from the others were considered as outliers and 
eliminated. 
 
Prediction mechanism 
The mechanism of the prediction was investigated 
by plotting Pearson correlation coefficients between 
toxic elements content of the samples and spectral 
variables. By this procedure, the most effective and 
useful spectral wavelengths were explored. In order 
to obtain more reliable results, Pearson correlation 
coefficients between toxic elements and active 
spectral features content of the soil samples were 
also calculated. 

Along with correlation analysis, the relationship 
between Fe and clay minerals content of the 
samples and prediction accuracy of proposed 
models was investigated in this study. All samples 
were sorted ascendingly for two times, first by 
Fe2O3 and then Al2O3 measured content of the soils. 
Based on the measured contents of Fe2O3 and 
Al2O3, samples were then divided into appropriate 
equal interval classes. The absolute relative error 
between predicted and measured As and Cr 
concentrations of every sample was calculated and 
then the mean absolute relative error (MARE) was 
obtained for each class (Eq. 1). The lower the 
MARE value of each class, the higher the accuracy 
of prediction for that class. Close relations between 
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the prediction accuracy of elements and content of 
each active spectral feature shows the importance of 
that feature in the mechanism of prediction by 
VNIR reflectance spectroscopy. 

  (1) 
where n is the number of soil samples 

Developing PLSR and GA-PLSR models 
Efficiency of wavelength selection using Genetic 
algorithm (GA) was evaluated by comparing PLSR 
and GA-PLSR models. PLSR models both the X- 
and Y-matrices simultaneously to find the latent (or 
hidden) variables in X that will best predict the 
latent variables in Y. These PLS components, 
referring as factors, are similar to principal 
components. GA is a stochastic optimization 
algorithm and population based search technique 
patterned after mechanics of natural selection and 
natural genetics in biological evolution. It is based 
on the survival of the fittest theory with genetic 
operator inspired from the nature. Search, 
optimization and machine learning are some of the 
topics that GA successfully deals with (Wang, 
1991). Readers are referred to following literatures 
for detailed theory of PLSR and GA (Holland, 
1975; Geladi and Kowalski, 1986; Golberg, 1989; 
Van Huffel, 1997).  

General and GA-PLSR models were established 
by performing leave-one-out-cross validation 
(LOOCV) approach on the entire soil samples. In 
order to calibrate the models and estimate their 
predictive performances, LOOCV is the best 
method when facing with small data sets (40–120 
samples) (Martens & Dardenne, 1998). The 
optimum number of latent variables (LVs), was also 
determined by leave-one-out cross-validation 
procedure. In order to obtain an optimum GA-PLSR 
model, different values for GA parameters were 
tested, resulting in: population Size 30, window 
width (15 nm), Mutation rate 0.4, Crossover rate 
0.1, max generations (150) and replicate runs (5). 
Root mean square error (RMSE) was used as the 
fitness criterion.  

Prediction quality assessment 
Models assessment was based on the coefficient of 
determination (R2), root mean squared error 
(RMSE) (Eq. 2) and the ratio of prediction to 
deviation (RPD). RPD, the ratio of the SD to the 
RMSE (Eq. 3) is a factor evaluating the 

generalizing capability of each model. A five level 
description of RPD was used including: Useless 
calibration for values below 1.5, possibility to 
distinguish between high and low values for RPD 
between 1.5 and 2, possibility of approximate 
quantitative predictions for values between 2.0 and 
2.5 and finally good and excellent prediction for 
values between 2.5 and 3.0, and above 3.0, 
respectively (Saeys et al., 2005).  

 (2) 

 (3) 

where yi´ is the predicted value, yi denotes the 
observed value, N represents the number of samples 
and SD is referred to the standard deviation. 

Spatial distribution 
Spatial distributions of measured and predicted 
values for As and Cr were visualized by contour 
mapping of the concentration data using SURFER 
program (Golden Software Inc., USA). Plots 
obtained using predicted and measured 
concentrations were then compared to assess the 
potential of VNIR spectroscopy in mapping toxic 
elements. The kriging geostatistical gridding 
method, was used in order to produce an optimal 
prediction of the not sampled points. Using 
variogram models, Kriging creates an accurate grid 
from unevenly spaced data and identifies trends 
embedded within (Cressie, 2015). A flowchart of 
the research procedure is presented in Fig. 2. 

Results and discussion 
Chemical and Spectral Properties 
The score values of the first three PCs provided two 
and three-dimensional plots. Four soil samples were 
removed due to their abnormal reflectance spectra 
(Fig. 3a). Table 1 shows the chemical analysis data 
for remaining 51 samples. Arsenic average 
concentration was 42.16 mg.kg-1 ranging between 
the minimum and maximum values of 4.6 mg.kg-1 
and 178 mg.kg-1 respectively.  

Meanwhile, Cr content of the soil had average of 
49.16 mg.kg-1 with variation range of 118 mg.kg-1. 
Both elements showed positively skewed distributions 
and high coefficient of variations which proved the 
highly heterogeneous environment of the dump. 
Because of logarithmic distribution of both elements 
concentrations, all further analysis were performed on 
log-transformed values (log10).  
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Figure 2. Flowchart of the study 

 
Frequency distribution histograms of normalized 

arsenic and chromium concentration values are 
shown in fig. 3b and c. 

The paste pH values ranged from 2.081 to 7.526, 
i.e., strong acid to neutral. The mean value of pH 
was 4.784; suggesting the acidity of soil in the 
study area. 

Raw, first and second derivative absorbance 
spectra of four selected representative samples are 
shown in Fig. 4. The main spectral region for Iron 
oxy/hydroxides is visible. Accordingly features at 
430 nm, 500 nm, 530 nm and 650 nm in the visible 
region are mainly due to the electronic transitions of 

of the Fe3+ in oxy/hydroxides including goethite 
(FeOOH) and hematite (Fe2O3) (Song et al., 2012).  

Clay minerals are mostly responsible for 
occurring peaks in the NIR region (Kooistra et al., 
2003). Peaks at ~1400 and ~2200 nm are mainly 
related to O-H bonds in the hydroxyl or clay 
minerals, such as kaolinite, illite and smectite 
(White, 1971; Nayak and Singh, 2007). The 
absorption peak at ~1900 nm is due to the O-H 
bond in water (Clark et al., 1990). 

 
Mechanism of the prediction  
Considering Fig. 5, each element displays its 
maximum correlation coefficient at a different 
wavelength across the spectral range. Regarding the 
relationship with soil VNIR spectra, As and Cr had 
two different behaviors. Arsenic had the highest 
spectral correlation at 530 nm while the strongest 
correlation for chromium was at 560 nm both 
arising due to Fe3+ absorption.  

In accordance with Fe2O3 spectral features, 
correlation in the visible region of the As varied 
between 410 and 660 nm. ~460 and ~560 nm 
relating to the spectral response wavebands of 
hematite, and ~930 nm relating to the spectral 
response location of goethite was the other 
important wavelengths (Fig. 5).  

Some studies have reported the important role of 
Fe oxy/hydroxides in controlling As (arsenate and 
arsenite) sorption in soil (Alloway, 1990). A 
positive correlation was found between the contents 
of As and the Fe oxy/hydroxides in floodplains 
along the river Rhine in Netherlands (Kooistra et 
al., 2001). In a goethite dominated area, similar 
results were reported for prediction of soil toxic 
elements including As while mentioning the 
importance of Fe oxides (Wu et al., 2007). 

The high correlation coefficients at ~530 and 
~550 nm were corresponded to the spectral 
response wavebands of clay showing that the 
internal relation between clay and As may be 
another important prediction mechanism.  

 
Table 1. Statistical description of the soil properties (mg.kg-1) 

Parameter Min Max Mean±SD Skewness Kurtosis C.V.(%) 
Arsenic 4.6 178.1 42.16±39.85 1.997 3.604 94.522 

Log (Arsenic) 0.663 2.251 1.481±0.348 0.302 0.014 23.513 
Chromium 15 133 49.16±25.686 1.34 1.69 52 

Log (Chromium) 1.18 2.12 1.64±0.32 0.12 -0.12 19.51 
SD: Standard deviation, C.V.: coefficient of variation 
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Figure 3. a: 2D score plot of two principal component analysis derived PCs (Red filled circles are outliers), frequency distribution 
histograms and box plots of b: arsenic and c: chromium contents of the soil samples 
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Figure 4. a) Raw b) first derivative and c) second derivative absorbance spectra of four representative soil samples (unit of the 
wavelengths: nm) 
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Figure 5. Correlation pattern between VNIR first derivative absorbance spectra and As and Cr contents of soil samples 

 
In a study conducted by Fordham and Norrish, the 

adsorption capacity of clay minerals were 
investigated for adsorbing As in the absence of Fe 
oxy/hydroxides on their surface (Fordham & Norrish, 
1983). Strong negative correlation coefficients 
between As and the spectral bands attributable to the 
absorption features of clay were also reported by 
(Song et al., 2012). 

Most of the important correlations between 
Chromium and VNIR first derivative absorbance 
spectra were observed at below 700 nm with the 
highest correlation coefficient at around 560 nm. 
This spectral range is compatible with the spectral 
response wavebands of Iron oxides, hence showing 
a strong relationship between Cadmium and iron 
content of the soils (Fig. 5). High correlation 
coefficients between Cr and spectral response 
wavebands of clay was also observed proving the 
internal relation between clay and Cr. Our 
observation was confirmed by calculating correlation 
coefficients between As, Cr and spectral features of 
the samples. As shown in table 2, both elements had 
significant correlations with iron and clay. The order 
of correlation with Fe2O3 was As>Cr while a reverse 
order was observed for the correlation with Al2O3, 
thought, both elements had higher correlations with 
Fe2O3. In a study of monitoring potentially toxic 
elements in the agricultural soils using diffuse 
reflectance spectroscopy, strong negative correlation 
coefficients between Cr and As and the spectral bands 
attributable to the absorption features of clay and 
organic matter was reported (Song et al., 2012). 

Samples were sorted twice based on the content 
of the measured Fe2O3 and Al2O3 and then graded 
into five and four groups respectively. For each 

modeling method, the MAREs between the measured 
and predicted concentrations of the elements in each 
group was then calculated (Table 3). Generally 
speaking, for both elements the MAREs values of all 
groups were lower using GA-PLSR showing higher 
performance comparing to PLSR. Furthermore, 
MAREs of As and Cr decreased by increasing Fe2O3 
and Al2O3 contents indicating a positive relationship 
between performance of both predicting models and 
iron and clay contents of the samples.  
 
Evaluation of the Prediction models 
Parameters of the PLSR and GA-PLSR models are 
presented in table 4. The PLSR models were 
constructed on entire wavelengths (400–2450 nm) 
while fewer number of wavelengths was selected by 
GA (i.e. 397 and 431 for As and Cr respectively). 

Based on the obtaining results, selection of 
variables by GA, improved the prediction accuracies 
for both toxic elements. Accordingly, GA-PLSR 
models of As and Cr increased the R2 values by 14 
and 29 percent respectively. Meanwhile, the models 
provided lower RMSE values of 0.149 and 0.161 for 
As and Cr respectively. 

The higher the prediction accuracy, the closer the 
predicted and measured values, i.e. scatter points of 
predicted values vs. measured values were closer to 
the 1:1 line. For both toxic elements, scatter plots of 
PLSR and GA-PLSR models are shown in Figure 6. 
As can be seen, GA-PLSR outperformed the 
general PLSR in terms of predicting both toxic 
elements concentrations. One may conclude that the 
inherent ability of genetic algorithm in optimum 
selection of spectral variables was the main reason 
for better results obtained by GA-PLSR. 
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Table 2. Correlation coefficients between toxic elements and iron and clay contents of the soil samples 

Element 
Correlation Coefficient 

Al2O3 Fe2O3 
As 0.51 0.68 

Cr 0.56 0.59 

Table 3. Mean absolute relative error (MARE) for evaluating the function of spectral features in As and Cr assessment using GA-PLSR 
and PLSR models 

Spectral 

Features 
Group n 

MARE for PLSR MARE for GA-PLSR 

As Cr As Cr 

Fe2O3 

#1 16 0.23 0.27 0.19 0.25 

#2 10 0.25 0.23 0.17 0.21 

#3 13 0.19 0.24 0.22 0.23 

#4 8 0.16 0.20 0.14 0.17 

#5 4 0.17 0.19 0.11 0.18 

Al2O3 

#1 21 0.31 0.27 0.28 0.25 

#2 13 0.28 0.24 0.23 0.17 

#3 9 0.25 0.24 0.21 0.23 

#4 8 0.22 0.20 0.22 0.18 

n: Number of soil samples in each group 
 

  

  
Figure 6. Scatter plots of the predicted versus measured a) log (Cr), b) log (As) using PLSR and c) log (Cr), d) log (As) using GA-
PLSR 
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Spatial distribution 
Geostatistics is an effective tool for studying the 
change and variance of soil properties and 
determining their regional distribution (Chen et al., 

2015). Spatial distribution maps of soil As and Cr 
concentrations, obtained by ordinary kriging using 
chemically measured and GA-PLSR predicted 
values are presented in Fig. 7. 

 
Table 4. Summary Statistics of PLSR and GA-PLSR Models 

Element 

PLSR  GA-PLSR  

LV R2
 

RMSE 
(mg.kg−1) 

RPD 

Number of 
GA 

Selected 
Bands 

LV R2
  

RMSE 
(mg.kg−1) 

RPD 

As  4 0.69 0.165 2.12 397 4 0.79 0.149 2.33 

Cr 5 0.55 0.182 1.78 431 4 0.71 0.161 2.01 

LVs: Latent variables; R2, Coefficient of Determination; RMSE, Root Mean Square Error, RPD: Ratio of Prediction to Deviation 
 

 
Figure 7. Spatial distribution of a) As measured, b) As PLSR predicted, c) As GA-PLSR predicted, d) Cr measured, e) Cr PLSR 
predicted and f) Cr GA-PLSR predicted concentrations 
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Similar geographical trends between measured 
and predicted plots were observed for both of the 
soil elements, although there were very slight 
differences. Considering Fig. 7a, b and c, similar 
patterns were observed as the measured and 
predicted As concentrations were high in the center 
to the left part of the dump, though the map of GA-
PLSR model was much similar to that of the 
measured data. For Cr, high concentrations were 
observed in center and left of the measured and 
predicted plots, though, there were more areas 
containing high quantities of Cr in the PLSR 
predicted map (Fig. 7c, d and f). Regarding the 
obtaining plots, GA-PLSR was shown to be an 
effective method for determining the spatial 
distribution of As and Cr elements using VNIR 
spectra.  

Methods used in this research can also be tested 
on other toxic elements or pollutants for future 
studies. Meanwhile, applying spectral parameters 
used in this study to multi/hyperspectral imagery 
can be a potential subject for further investigations 
on broader areas –in Sarcheshmeh and other places– 
for quantitative mapping of toxic elements 
distributions in broader affected areas. It is 
noteworthy to mention that spectroscopic based 
models have just been considered as beneficial 
supplements till now and further studies are needed 
to enhance and use them as an alternative to 
traditional methods. 
In future studies, more reliable results could be 
obtained by increasing sample numbers or with 
other advanced spectral pre-processing techniques, 
such as wavelet. Applying spectral wavelengths to 
the multi and hyperspectral images for mapping 
contamination levels through remote sensing 
techniques could be another interesting topic for 

researchers. 
 
Conclusions 
As one of the very few studies, quantitative 
modeling of toxic elements in a mining 
environment was applied using spectroscopy. 
General and GA-PLSR models were developed for 
prediction of As and Cr concentrations in a 
dumpsite soil using rapid and cost-effective VNIR 
spectroscopic method. Selecting wavelengths by 
GA had an important role in enhancing the models 
resulting in higher R2

CV values of 0.79 and 0.71 for 
As and Cr comparing to general PLSR model 
results. Meanwhile the RMSECV values of GA was 
decreased about 10 and 12 percent for As and Cr 
respectively. The GA-PLSR model gave RPD 
values ranging from 2.01–2.33 for both elements 
while the general PLSR model provided RPD 
values of 1.78–2.12 using the entire soil samples. 
Therefore, GA-PLSR was more successful for 
predicting the toxic elements concentrations by 
means of VNIR reflectance. Mechanism allowed 
prediction of soil As and Cr concentrations by 
VNIR was mainly based on intercorrelation 
between toxic elements and active soil components 
including Fe oxides and clay content of the soil 
samples. Efficiency of the proposed method was 
also proven when similar distribution patterns were 
observed between spatial distribution maps of soil 
As and Cr contents retrieved by interpolating the 
measured and predicted values. As the 
spectroscopic modeling results seem to be in 
adequate agreement with measured data, further 
studies are needed to determine the feasibility of 
applying ground-derived spectral wavelengths to 
multi and hyper spectral images. 
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