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Abstract 
The cold climate is a favorable parameter for the development of tension cracks and decrease of rock brittleness. Therefore, this paper 
attempts to investigate the Hamekasi porous limestone in order to predict the brittleness indices during freeze-thaw cycles. The freeze–
thaw test was executed for one cycle including 16 h of freezing, and 8 h of thawing. The geo mechanical properties and brittleness 
indices (B1, B2, B3) of limestones were measured across freeze-thaw cycles from cycle 0 (fresh rock) to cycle 40. Statistical analyses, 
including simple and multiple regressions, were applied to identify those geomechanical parameters that are most influenced by the 
progression of freeze-thaw cycles and more appropriate for the brittleness prediction. Based on simple regression, all geomechanical 

properties including tensile strength ( t ), uniaxial compressive strength ( c ), P-wave velocity (Vp), porosity (n), and quick 

absorption index (QAI) (except dry density ( d )) demonstrated good correlations with brittleness index (B3). The integrated prediction 

of brittleness is put forward to develop some models by multiple regression (MR) and artificial neural network (ANN) with some 
statistic parameters (R, RMSE, VAF and ME), based on all geomechanical properties examined in this research. It is concluded that 
models based on n, Vp and d  exhibited high performance according to the obtained statistic parameters. In spite of the fact that Vp 

has good correlation coefficient (R) with freeze-thaw cycles, and B3 (R2= 0.74, and 0.55, respectively) in simple regression, it does not 
have a prominent effect on B3 in MR models. Also, parameters with low correlation coefficient in simple regression ( d =0.15) cannot 

improve the model performance in ANN methods. 
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Introduction 
Brittleness is of vital importance to the rock 
mechanics projects, and rock industry. It was 
defined as the ability of a rock material to deform 
from continuum (intact rock) to discontinuum 
(fracturing without appreciable deformation under 
low stress) (Goktan & Yilmaz, 2005; 
Hajiabdolmajid et al., 2002; Kaiser et al., 2000). In 
cold regions, rocks are exposed to freeze-thaw 
cycles which induce tensile stress in the porous 
system of rock, and therefore increase rock damage 
(Bayram, 2012; Chen et al., 2004; Hori & Morihiro, 
1998). Brittleness and rock damage depend on rock 
type (lithology), composition, temperature, 
porosity, and moisture content (Heidari et al., 
2013), and also in cold regions depend on the 
number of freeze–thaw cycles as they increase 
micro-cracks (Chen et al., 2004; Takarli et al., 
2008; Tan et al., 2011). Besides, it is evident that 

rock strength properties such as c and t  

decrease with an increase in micro-cracks and/or 
porosity (Al-Harthi et al., 1999; Gharahbagh et al., 
2011; Moh’d, 2009; Palchik & Hatzor, 2004; 

Rajabzadeh et al., 2012). Consequently, the 
brittleness index is largely a function of rock 
properties and freeze-thaw cycles in cold regions; 
therefore, its measurement based on these factors is 
highly crucial.  
 Gong and Zhao (2007) divided the brittleness 
measurements into five groups as follows: (i) Strain 
based method with only one parameter for 
estimation (George 1995; Hajiabdolmajid et al., 
2002; Hucka & Das, 1974); (ii) Reversible energy 
based method using the areas under the stress–strain 
diagram (Altindag, 2003; Hucka & Das, 1974; 
Vihtuk, 1998); (iii) Mohr’s envelope based method 
(Hucka & Das, 1974); (iv) Strength ratio based 
method using Eqs. 1 to 3 defined later in the paper 
(Altindag, 2002; Hucka & Das, 1974; Kahraman, 
2002); (v) Special test based method, using the 
percentage of fines formed in the impact test, and 
the ratio of maximum force to the penetration value 
gained from punch penetration test (Blindheim and 
Bruland, 1998; Protodyakonov, 1963; Yagiz, 2009). 
Furthermore, regarding these classifications, 
statistical analysis methods such as simple and 
multiple regressions and fuzzy inference system, 
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using some cheap, simple and time effective tests 

such as d  (dry density), n (porosity), point load 

index (Is) shore hardness (SH) instead of σc and σt, 
as these two tests need strict requirements for 
sample preparation (core samples) (Yagiz & 
Gokceoglu, 2010; Altindag & Guney, 2010; Heidari 
et al., 2013).  
 The main objectives of this study are to estimate 
brittleness index based on σt and σc and to develop 
some MR, and ANNmodels for estimating 
brittleness index in the studied area. Several 
possible models are proposed, using a combination 
of various physical and mechanical properties 

including n, d , Gs, QAI, and Vp. The Hamekasi 

porous limestone from western Iran is selected as 
the material of interest with respect to freeze-thaw 
degradation, and brittleness index. 

 
Study area 
The study area is a part of the Sanandaj–Sirjan Zone 
(SSZ), or Zagros Imbricate Zone of the Zagros Origin 
(according to Alavi, 1994). The oldest and the most 
predominant rocks in this zone are the slightly 
metamorphosed slate, phyllite, and schist rocks of late 
Triassic– Jurassic age, which are locally accompanied 
by sedimentary and magmatic rocks (Berberian & Alavi 
Tehrani, 1977; Sepahi 1999). The study area was a 
shallow water environment over early Cenozoic time 
which had come to an end by the deposition of Oligo-

Miocene limestone in the Qom Formation. This 
Formation is formed of stratified and massive limestone, 
pale green–grey marl and sandstone (Geological and 
Mineral Survey of Iran, 1979). For the present study, 
Hamekasi limestone outcrop was investigated (Fig. 1). 
This limestone, in the northern part of the SSZ in 
western Iran, is so porous and karstified (Amiri, 2005; 
Karimi & Taheri, 2010; Khanlari et al., 2012; Zamiran 
Consulting Engineers, 2003). The climate of the study 
area is regarded as cold semiarid, with an average 
precipitation and temperature of about 300 mm and 
13.35∘C per year, respectively. The average number of 
freezing days is computed 85 days per year with 150 cm 
freezing depth (Sabziparvar, 2003). 

Thin sections were examined and 
photomicrographs of these limestones before 
freeze-thaw test are presented in Figure 2, that are a 
and b. The microfauna collected from the Qom 
Formation include Miogypsina sp., Nummulite sp., 
and Corraline red Algea which confirms its 
aforementioned age. The thin section analyses of 
the carbonate rocks in Hamekasi demonstrate 
packestone structure and sparite cement.  
 
Materials and Methods 
Materials  

As mentioned, in this study the Hamekasi 
limestone sample is used to characterize rock 
brittleness in relation to freeze and thaw cycles.  

 
 
 
 

 
Figure 1. Location of different limestone and sampling points in the study area 
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Figure 2. a) Bioclastic packestone with Miogypsina sp., and Corraline red Algea ;b) Bioclastic packestone with Nummulite, and 
Miogypsina sp. 

 
Samples were collected from Hamekasi village 

outcrops, and about 10 large blocks were prepared, 
each of which was capable of providing more than 
10 core samples. Samples were executed at the 
Rock Mechanics Laboratory of the Engineering 
Geology Department of Bu-Ali Sina University in 
Hamedan, Iran. 

 
Methods  
The two size of samples, according to ISRM 1979 
and 1978, were prepared in the laboratory to avoid 
sample preparation effect during freeze-thaw test 
(Fig. 3),  and to determine their physical and 
mechanical properties, including: dry density ( d ), 

total porosity (n), quick absorption index (QAI), P-
wave velocity (Vp) (ISRM 1981); uniaxial 
compressive strength ( c ) (ISRM 1979); Brazilian 

tensile strength (σt) (ISRM 1978).  
 

Brittleness Indices 
The determination of brittleness is largely driven by 
empirical results, but not easily accessible to 
experiment. Numerous different measurements of 
rock brittleness were generated based on different 
approaches. Among the brittleness coefficients, the 
ones based on c and t  are the most widely used 

concepts for quantification of rock brittleness 
(Altindag, 2002; Gong & Zhao, 2007; Kahraman, 
2002; Yagiz, 2004, 2006). The brittleness indices 
found by Hucka and Das (1974) (Eqs. 1 and 2) and 
Altindag (2002) (Eq. 3) which have been calculated 
in this study are as follows.  
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where B1, B2, B3 are brittleness indices, σc is 
uniaxial compressive strength (MPa), and σt is 
Brazilian tensile strength (MPa). It should be 
mentioned that only B3 was used for MR and MLP 
analyses.  

 
Freeze–thaw test procedure 
The physical weathering was simulated in 
laboratory by freeze and thaw test, following the 
method suggested by ASTM 5312 (2004). As the 
average maximum (37.5˚C) and minimum (-19˚C) 
temperatures of the study area are so close to 
ASTM, it is supposed to be a proper simulation 
system for freeze and thaw test. Nevertheless, some 
modifications had been made such as test numbers, 
and sample shapes. In this study, the freeze-thaw 
test had been repeated in 40 cycles. The test was 
performed on aforementioned three size samples 
including cores with a diameter of 54 mm, and 
length to diameter ratio (L/D) of 2.5 for uniaxial 

compression strength test, and 0.5 (L/D) for t  test 

(Fig. 3). According to these standards 100 samples 
were prepared for all laboratory tests. Finally, 41 
data were measured for each test in all freeze–thaw 
cycles. 
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Figure 3. Limestone samples with various dimensions for 
freeze–thaw test (stage 1, and stage 5) 
 

For the execution of this test, samples were 
submerged in water solution with 5% isopropyl 
alcohol. The saturated samples were subjected to 
freezing temperature of −20°C for 16 h. Upon 
completing the freezing time, the samples were 
subjected to thawing at a temperature of 32˚C for 8 
h (Fig. 4). Before freeze-thaw test, all 
geomechanical properties were determined. Then 
after each 10 freeze–thaw cycles, 30 samples were 
dried in an oven at 110°C. The percentage loss of 
weight, and index properties including d  , n , QAI, 

Vp, c and  and brittleness indices (B1, B2, B3) 

for limestone samples were measured after each 10 
freeze–thaw cycles. 
 

 
Figure 4. Generalized temperature curve for a freeze–thaw 
cycle (ASTM 5312, 2004) 
 
Multiple Linear and Non Linear Regressions (MR) 
Analyses 
The multivariate regression technique is employed 
to combine more than one parameter which affects 
rock brittleness (Torabi-Kaveh et al., 2014). This 
method can be practical in those cases where 
complex relations are involved (Karakus et al., 
2005). Altindag (2010) and Yagiz & Gokceoglu 

(2010) proposed that the combination of 
engineering parameters (geomechanical properties) 
should be considered if a better rock brittleness is to 
be made. Therefore, this research examined various 
combinations of independent variables (X) as inputs 
to the MR models. It was to evaluate the degrees of 
effect of variables on dependent parameter (Y). 
Both linear and nonlinear regressions analysis were 
performed using Datafit statistical software 8.1 for 
prediction of rock brittleness. Here, MR equations 
were computed accompanying by some statistics 
including: the correlation coefficient (R) for the 
strength of relationship (Eq. 4), root mean square 
error (RMSE), mean error (ME) and variance 
accounted for (VAF) for the equation performance, 
accuracy and comparison of models (Eqs. 5; 6; 7). 
The best model performance gives the lowest 
RMSE and ME (close to 0) and the highest R and 
VAF (close to 100).  
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where N is the total number of data, yi is the 
measured B3, ŷi is the predicted B3 and y is the 

average of measured B3. To determine 
underestimated and overestimated data in the 
models, ME statistic was used. ME has negative 
and positive values; therefore, the outliers are 
indicative of data points that belong to both 
underestimated and overestimated data. 
 
Artificial Neural Network (ANN)Analysis 
ANN consists of simple synchronous processing 
elements, called neurons, which are inspired by 
biological nerve system (Malinova and Guo, 2004). 
It is a popular choice for modeling nonlinear 
systems and for implementing general-purpose 
nonlinear controllers. The most particular 
characteristic of an ANN system is its capability to 
learn from the data being processed. It can be used 
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to solve problems that are not suitable for 
conventional statistical methods (Aqil et al., 2007). 
ANN is typically organized in layers. Layers are 
made up of a number of interconnected 'Neurons' 
which contain an 'activation function'. Patterns are 
presented to the network via the 'input layer', which 
communicates to one or more 'hidden layers' where 
the actual processing is done via a system of 
weighted 'connections'. The hidden layers then link 
to an 'output layer' where the answer is output. The 
output layer, on the other hand, uses supervised 
learning to set its parameters. In supervised 
learning, Neural network entails learning a mapping 
between a set of input variables X and an output 
variable Y and applying this mapping to predict the 
outputs for unseen data (Fig. 5A).   

Multilayer perceptron (MLP) with default scale 
[0 –1] is the most common type of ANN used for 
supervised prediction. A MLP is a feed-forward 
neural network. In this type, network reaction 
routes always proceed feed-forward, and permit 
signal to transform only one route that is input to 
output (Fig. 5B).  

After normalizing/standardizing of data, for the 
development of ANN models, all data should be 
partitioned into two data sets, training (twothirds of 
all data), and testing (one-third of all data) 
(Lawrence, 1991; Zurada, 1992). The training data 
set is used to make several MLP architectures, with 
especially different learning conditions for MLP 
models. Also, the testing data set is separated to 
verify suitability of trained models. As supervised 

learning is used for MLP models, the observed 
values (measured brrittleness) are needed to 
confirm the results from MLP. 
 
Results and Discussions     
Geomechanical and Brittleness Indices during 
Freeze and Thaw Test  
The results of the physical and mechanical tests 
performed on the limestone samples before freeze–
thaw test (cycle '0') and after each 10 cycles (Cycles 
'10', '20', '30' and '40') are reported in Table 1. The 
percentage loss in weight, c  and t  are also 

presented in Table 1. It can be seen that there is a 
considerable change after cycle '0' in all 
geomechanical properties (except d ). This may be 

related to the first freeze shock of rock that caused 
some fractures which were developed over other 
freezing stages. Moreover, Martinez-Martinez et 
al., (2013) stated that after a threshold, microcracks 
turn into cracks, so it could be the reason for the 
second sharp changes in some index properties such 
as n, QAI and Vp in the last stage of freeze-thaw 
test (cycle '30'). As it was expected, rock 
deterioration was constantly occurring after cycle 
'40'; as a result, it was decided not to perform 
freeze-thaw test more than 40 cycles. d  shows 

relatively disorder trend during freeze-thaw test 
(Table 1). This is because each porous rock has a 

large range of d . 

 

 
Figure 5. Typical details of a neuron and a feed-forward ANN model 
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Table 1. Physico-mechanical properties and Brittleness indices of limestone samples before and after freeze and thaw test 

Cycle 

No 

 

d  (g/cm3) n (%) 
QAI 

(%) 
Vp (m/s) c  

(MPa) 

t  

(MPa) 

Percentage 

loss in 

weight 

Percentage 

loss in c  

Percentage 

loss 

in t  

B1 B2 
B3 

(MPa)2 

0 1.90 14.97 8.00 3342.38 14.91 4.05 0 0 0 3.68 0.57 30.17 

1.87 13.66 7.21 3573.03 14.24 2.35 0 0 0 6.06 0.72 16.73 

2.08 13.88 5.83 3294.12 12.63 3.24 0 0 0 3.90 0.59 20.45 

2.01 14.50 6.87 3253.67 13.73 3.65 0 0 0 3.76 0.58 25.05 

2.09 14.98 7.43 3532.01 14.64 4.10 0 0 0 3.57 0.56 30.04 

1.97 13.71 7.78 3309.69 13.91 3.82 0 0 0 3.65 0.57 26.54 

1.84 14.20 8.10 3389.02 14.53 4.44 0 0 0 3.27 0.53 32.24 

Ave. 1.97 14.27 7.32 3384.85 14.08 3.66 - - - 3.99 0.59 25.89 

Std. 0.10 0.56 0.79 122.46 0.76 0.69 - - - 0.94 0.06 5.63 

10 2.10 18.20 8.29 3088.24 12.83 2.58 0 8.88 29.44 4.97 0.66 16.57 

1.96 18.30 9.35 3009.40 12.50 3.81 0.031 11.22 -4.15 3.28 0.53 23.82 

1.86 18.50 9.48 3333.33 12.67 3.56 0.064 10.01 2.79 3.56 0.56 22.54 

1.85 18.00 9.21 3498.92 11.16 2.80 0.074 20.74 23.56 3.99 0.60 15.61 

1.91 18.30 9.80 3244.55 12.42 2.53 0.063 11.77 30.89 4.91 0.66 15.71 

1.97 18.70 9.99 3081.63 11.62 2.94 0.058 17.45 19.67 3.95 0.60 17.09 

2.23 17.56 8.90 3129.41 13.90 2.61 0 1.30 28.66 5.32 0.68 18.14 

2.21 19.00 8.34 3236.02 14.28 3.11 0.109 -1.39 15.02 4.59 0.64 22.20 

1.95 17.30 8.63 3200.38 12.67 2.49 0.209 10.01 32.02 5.09 0.67 15.76 

Ave. 2.01 18.21 9.11 3202.43 12.67 2.94 0.07 10.00 19.77 4.41 0.62 18.60 

Std. 0.14 0.53 0.61 149.24 0.97 0.47 0.06 6.91 12.96 0.73 0.05 3.31 

20 2.00 19.20 10.45 3176.11 10.15 3.23 0.117 27.92 11.72 3.14 0.52 16.40 

2.09 20.00 11.09 3018.79 10.11 3.64 0.043 28.22 0.43 2.77 0.47 18.42 

2.27 17.89 9.10 2992.30 12.47 3.20 0.046 11.47 12.57 3.90 0.59 19.94 

2.09 18.00 11.04 3116.80 11.41 2.02 0.066 18.95 44.71 5.64 0.70 11.55 

2.12 19.91 10.09 3111.89 12.30 2.58 0.000 12.67 29.44 4.76 0.65 15.88 

2.05 18.50 8.60 3225.72 13.43 2.73 0.091 4.59 25.40 4.92 0.66 18.34 

2.12 17.58 9.50 3274.84 11.62 2.04 0.090 17.45 44.18 5.69 0.70 11.87 

1.82 17.87 10.07 3374.74 11.63 2.13 0.028 17.40 41.75 5.45 0.69 12.40 

1.86 18.90 9.61 3276.80 11.65 2.78 0.882 17.26 23.94 4.18 0.61 16.22 

Ave. 2.05 18.65 9.95 3174.22 11.64 2.71 0.15 17.32 26.02 4.50 0.62 15.67 

Std. 0.14 0.91 0.84 126.47 1.06 0.58 0.28 7.51 15.75 1.07 0.08 3.08 

30 1.89 20.99 9.88 3088.24 11.49 2.87 0.104 18.39 21.49 4.00 0.60 16.51 

1.92 19.34 10.31 3178.91 11.51 2.56 0.149 18.25 30.05 4.50 0.64 14.73 

1.97 20.86 10.59 2891.01 11.47 2.10 0.049 18.54 42.62 5.46 0.69 12.04 

1.86 18.10 9.20 3232.00 11.87 2.48 0.016 15.70 32.13 4.78 0.65 14.74 

1.91 19.53 11.14 2983.18 11.20 2.03 0.045 20.45 44.47 5.51 0.69 11.38 

1.96 17.98 8.51 3081.63 11.30 2.35 0.086 19.74 35.82 4.81 0.66 13.27 

2.07 18.00 9.01 3329.41 11.50 2.20 0.028 18.32 39.89 5.23 0.68 12.65 

2.04 19.30 9.39 3236.02 11.60 2.53 0.014 17.61 30.89 4.59 0.64 14.67 

Ave. 1.95 19.26 9.75 3127.55 11.49 2.39 0.06 18.38 34.67 4.86 0.66 13.75 

Std. 0.07 1.21 0.88 144.67 0.20 0.28 0.05 1.41 7.59 0.52 0.03 1.71 

40 1.87 20.93 11.17 2991.10 10.92 1.97 0.145 22.44 46.29 5.55 0.69 10.73 

1.88 21.11 11.24 2730.25 11.32 2.18 0.097 19.60 40.53 5.20 0.68 12.32 

1.85 21.64 11.69 2893.00 11.42 2.41 0.235 18.89 34.10 4.73 0.65 13.77 

1.86 21.20 11.39 2934.20 11.12 1.89 0.052 21.02 48.36 5.88 0.71 10.51 

1.88 21.74 11.56 2781.95 12.09 2.30 0.097 14.16 37.16 5.25 0.68 13.90 

2.04 20.64 10.12 2995.20 10.70 2.38 0.056 24.03 34.95 4.49 0.64 12.73 

2.00 19.32 9.65 2872.73 11.39 1.92 0.103 19.10 47.64 5.94 0.71 10.91 

1.89 20.05 10.58 2622.06 11.36 1.78 0.112 19.32 51.37 6.38 0.73 10.11 

Ave. 1.91 20.83 10.92 2852.56 11.29 2.10 0.11 19.82 42.55 5.43 0.69 11.87 

Std. 0.07 0.81 0.73 131.65 0.41 0.24 0.06 2.92 6.69 0.64 0.03 1.50 
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As it can be seen in Table 1, the loss weights are 
low and only microcracks happen in the first 10 
cycles that influence n, QAI and strength properties 
and have no substantial effect on d . Overall, the 

whole geomechanical properties decreased and 
some of them such as QAI and n increased after 40 
freeze and thaw cycles (Figure 6). Among all these 
properties, n has the highest correlation coefficient 
(R=0.85) with freeze-thaw cycles. Some other 

parameters including QAI, Vp, t  and c  also 

have acceptable R; 0.77, 0.74, 0.73 and 0.73, 
respectively. Therefore, the n and QAI are 
considered to be more sensitive to freeze-thaw test. 
This is because n and QAI have the most reduction 
values that make it more sensitive to even small 
changes in rock properties (Table 1). Among other 
parameters Vp, in spite of its lower R, seems to be 
more practical for determination of the changes in 
n, and the state of fissuring during freeze-thaw test. 

The brittleness indices values (B1, B2 and B3) of 
the studied rock are shown in Table 1. According to 
previous researchers (Altindag, 2003; Heidari et al., 
2013; Yagiz, 2009; Yarali & Kahraman, 2011; 
Yarali & Soyer, 2011), the results of these indices 
should be decreased by increasing in deterioration 
of rocks. As shownin Figure 7, brittleness concept 
(B3) has a negative relationship with increasing the 
freeze-thaw cycles, and two others have a positive 
relationship. The results of B1 and B2 are not in 
agreement with other research papers and both of 
them should have a negative relationship with 
increasing n and decreasing rock strength. This 
reverse trend happened, firstly, because tensile 
stress and microcrack propagation induced by water 
crystallization was dominant during freeze-thaw 
test. Therefore, the t  loss percentage is obviously 

more than the c  loss percentage (Table 1). 
Secondly, in both brittleness formulas (B1 and B2), 

t  exists in the denominator of the fractions. 

Besides, some researchers reported; these two 
concepts caused some vague definitions for rock 
brittleness (Heidari et al., 2013; Suorineni et al., 
2009). Therefore, it is postulated that B3 should be 
only used in analytical analyses. In addition, B3 
shows the best correlation with the freeze-thaw 
cycles (Fig. 6).  
 
Statistical Evaluation between the Brittleness Index 
(B3) and Geomechanical Properties 
In order to establish some predictive models for 

assessing brittleness based on geomechanical 
properties under cold condition, some simple 
analytical analyses were performed by using all 41 
data.  

The relations between B3 and other parameters 
are presented in Figure 7. Some obtained equations 
are relatively found not to be statistically correlated 
with brittleness index (B3) including d  with very 

low R about 0.15. Also, Vp, n and QAI in 
comparison to other index parameters can be 
considered to have fairly good correlations with B3 

values (R> 0.55). The strength parameters 

( c and t ) are shown the better correlation 

coefficients than other physico-mechanical 
parameters, as these parameters involved in B3 
formula.   

It was reported earlier by Heidari et al., (2013) 
that no meaningful relation could be found between 
n and brittleness indices, owing to the high 
mineralogical variety or presence of minerals with 
plastic behavior. But as mentioned, there is a 
meaningful relationship between n and B3 (R=0.69), 
because mineral composition have never changed 
and only physical rock deterioration was happened 
by freeze-thaw test. 

The descriptive analyses of the geomechanical 
properties and B3 values are presented in Table 2. 
The Vp parameter, among others, has the highest 
range from 2622 to 3573(m/s) and the lowest 
scattering in the results. Due to its higher variation, 
this parameter can be a good indicator in laboratory 
for determining B3 after each freeze-thaw stage as 
its variation is clearly distinguishable. Although, the 
percentage loss of this parameter is lower than other 
parameters.  
 
Assessment of Rock Brittleness Using Multiple 
Linear and Non Linear Regressions (MR) 
As seen in previous section, each engineering 
parameter may suggest different rock brittleness 
when used individually. 

Owing to that, a multivariate technique (in this 
case, MR) should be used to simultaneously 
combine the effects of these different parameters on 
the rock brittleness.Therefore, 3 equations were 
generated with 2 to 3 independent variables. The 
evaluated input combinations for brittleness index 
(B3) are shown in Table 3.  

The cross-correlations between measured and 
predicted brittleness index are plotted based on 
simple indices for all models (Fig. 8). 
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Figure 6. The relationship between geomechanical and brittleness indices and freeze-thaw stages 
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Figure 7. The relationship between geomechanical properties and Brittleness index (B3) 

 

Some engineering parameters such as c and t  

are widely employed for predicting of rock 
brittleness, regardless of the difficulties involved in 
preparing standard core samples (Altindag, 2002; 
Protodyakonov, 1963). In this study, simple, 
inexpensive, and non-destructive engineering 
parameters including physical properties n, Vp and 

d  were postulated to predict brittleness concept 

(B3). Among all models, model 3 appears to be 
more reliable than others. These parameters were 
fed to the MR models in three steps based on the 
best subset method.  

As n and QAI parameters provide same 
information, the n which has the highest R in simple 
regression analysis considered as constant 
parameters in all models. Parameters with the 
highest R in simple regression analyis including n 
and Vp were put into model 1. It was also decided to 
put d  in model 2 as it has a lower R in comparison 

to Vp (Fig. 7). Then, all parameters were fed into 
the models 3 to prove brittleness prediction. 

All three models yield R < 0.7, RMSE ≤ 4, ME ≤ 
0 and VAF ≤ 49.24 (Table 3). The first multivariate 
equation (model 1) has good statistic parameters. Vp 
(model 2) has a relatively good R value in simple 
regression, and it improved the statistic parameters 
in multiple regression (R= 0.697, RMSE= 4, ME= 
0.00, VAF= 48.6). In spite of the low statistical 
correlation of d  in simple regression analysis 

(R=0.15), multivariate equation formed from this 
parameter appears to be more reliable than the 
model in simple regression for brittleness prediction 
(Model 2). 

Consequently, the equation forms from simple 
indices including n, Vp and d appears to be more 

precise and reliable than other models for predicting 
B3 with higher statistic parameters (Model 3). 
Although, models (1) and (2) can be considered as 
good models, because they have very close statistic 
parameters to model 3 and lower number of 
variables. 
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Table 2. Descriptive statistics of training and testing data sets 
Variables Training set Testing set 

Range Mean. Max. Min. Std. Rang

e 

Mean. Max. Min. Std. 

n (%) 8.08 18.11 21.74 13.66 2.34 6.22 18.99 21.2 14.98 1.82 

QAI (%) 5.86 9.40 11.69 5.83 1.40 3.96 9.64 11.39 7.43 1.34 

Vp (m/s) 950.97 3141 3573.03 2622.06 218.18 641 3154.1 3532.01 2891 202.18 

d (g/cm3) 
0.43 1.97 2.27 1.84 0.12 0.39 1.99 2.21 1.82 0.12 

B3 (MPa)2 22.13 17.23 32.24 10.11 5.64 19.53 16.16 30.04 10.51 5.88 

 
Table 3. Performance indices (R, RMSE, ME, VAF), and equations for MR models 

Model 

No. 

Variables Equations R RMSE 

(MPa)2 

ME 

(MPa)2 

VAF 

(%) 

1 n & Vp 3
)47 (2.2 10 )3 6.11/ 16.37B n Vp     

0.697 4 0.00 48.6 

2 
n,& d  514.49 / 3.61 18.7)3 dB n     0.698 3.99 0.00 48.8 

3 
n, , Vp & d  

4

3 exp( 0.089 (1.12 10 ) 0.19 3.71)
p dn VB       0.699 3.98 -0.003 49.24 

 
Assessment of Rock Brittleness Using ANN 
The multivariate models are more practical than 
simple models, but they cannot estimate rock 
brittleness accurately. Therefore, in this paper it is 
tried to develop more sensible models using MLP, a 
feed-forward Neural Network to estimate the 
brittleness index by using geomechanical 
properties.  

In this study MatLab 7.1 software with one layer 
feed-forward network is programmed, and it is 
comprised of an input layer (3 units), a hidden 
layers (10 neurons; with Tangent Hyperbolic 
activation function), and an output layer (1 neuron 
and linear activation function) (Fig. 9; Matlab 7.1. 
2005). These activation functions were proposed for 
MLP modelling (Hornik et al., 1989; Nourani & 
Sayyah Fard, 2012). In the analyses, network 
parameters were adjusted as follows: learning rate 
parameter: 0.01, momentum parameter: 0.9, number 
of training epochs: 500 and variable learning rate 
with momentum (trainLm). 

The input variables were put in the MLP models 
in 3 steps as developed MR models. As mentioned 
before, for establishing an optimal network, the 
network should be trained using training data set, 
and then the accuracy of statistic parameters of the 
trained neural network should be checked using 
testing data set. If the statistic parameters are found 

to be satisfactory, the training process is terminated. 
The results are represented in Table 4, and Figure 
11. In comparison to MR models, all MLP models 
have higher ME values. As shown in Table 4, 
model 1 which is based on n and Vp parameters 
yields good statistic and accuracy values for both 
training and testing dataset (i.e. for training: 
RMSE= 3.46, VAF= 48.44, ME= 0.02, R= 0.8). 

Model 2 is based on d input variable, and it has a 

dramatic decrease in statistic parameters of testing 
data set, because this parameter has a negligible 
correlation coefficient ( d : R=0.15) in simple 

regression method. 
Model 1 and 2 have similar correlation 

coefficients for training data set (R=0.8), but other 
statistic parameters differentiate these two models. 
This implies that it is better to use some statistic and 
accuracy parameters with correlation coefficient. 

As seen earlier in MR models, the statistic 
parameters have increased fairly well by using all 
three variables (Model 3), it is also seen this 
increase in MLP models (R= 0.83, RMSE= 3.24, 
ME= 0.00, VAF= 43.62).  

The MLP models have so obvious changes in 
statistic parameters for all models in comparison to 
MR models, and the network has not improved by 
increasing the number of independent variables. 



Rock Brittleness Prediction Using Geomechanical Properties of Hamekasi…     29 

The Comparison of MR and ANN Models 
Residuals between the observed and predicted 
results for the best MR and ANN models have been 
shown in Figures 11 and 12. The residuals between 
the observed and predicted data points which 
measure mismatch between these points express 
under and overestimate of each data points, and in 

other words the value of error. As depictedin Figure 
12, MR model mismatchs many of data points. The 
comparison of the models produced from ANN and 
MR residuals show that ANN model for the 
prediction of B3 is more reliable than the MR 
model.  

 

Table 4. Performance indices (R, RMSE, ME, AIC) for ANN models 
Mode

l No. 

Variables Training set Testing set 

R RMSE 

(MPa)2 

ME 

(MPa)2 

VAF 

(%) 

R RMSE 

(MPa)2 

ME 

(MPa)2 

VAF 

(%) 

1 n,& Vp 0.80 3.46 0.02 48.44 0.67 2.05 -0.03 40.2 

2 
n & d

0.80 3.3 0.05 46.31 0.56 2.09 -0.08 47.21 

3 
n, , d & Vp 

0.83 3.24 0.00 43.62 0.67 1.9 -0.01 40.2 

Figure 8. Comparisons between the predicted and the measured brittleness index (B3) in MR models 



30 Ghobadi & Naseri  JGeope, 6 (1), 2016 

Figure 9. Schematic structure of a feed-forward ANN (MLP) used in this study 

Figure 10. Comparisons between the predicted and the measured brittleness index from ANN 
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Figure 11. The error distribution for the different MR models and measured data (B3) 

 

 
Figure 12. The error distribution for the different ANN model and measured data (B3) 

 
Conclusions 
This paper shows the results of the brittleness of 
Hamekasi porous limestone during the freeze-thaw 
test. Overall, the paper presents a comprehensive 
laboratory test results aimed to establish a model 
based on geomechanical properties under the 
freeze-thaw test.  

Freeze-thaw cycles cause the development of 
tension cracks and a decrease in rock brittleness.  
In order to investigate the development of tension 
cracks during freeze-thaw cycles in porous rocks, 
brittleness index (B3) is an appropriate parameter. 

In the present study, the freeze and thaw test have 
been performed in 40 cycles. This is because the 
increase in the number of test cycles turns the 
microcracks into fractures, and has no other 
prominent effect on the obtained results.  

Contrary to the results have been previously 
reached by other researchers, it is shown that n and 
QAI have meaningful relations with brittleness 
index (B3). 

All MR and MLP models are relatively good for 
predicting brittleness index and increase in the input 
variables did not improve models performance. 
Among all MR and MLP models, model 3 (using n, 
Vp and d ) can be considered as the best model for 

predicting B3. 
Vp, which has a relatively good R in comparison 

to d , is supposed to increase model statistic 

parameters, but it does not.   
It should be mentioned that using more number 

of statistic parameters increased the model 
accuracy. 
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