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Abstract
Lithofacies identification can provide qualitative information about rocks. It can also explain rock textures which are important
components for hydrocarbon reservoir description Sarvak Formation is an important reservoir which is being studied in the Marun oil
field, in the Dezful embayment (Zagros basin). This study establishes quantitative relationships between digital well logs data and
routine petrographic data, obtained from thin sections description. Attempts were made to predict lithofacies in 13 wells, all drilled in
the Marun oil field. Seven well logs, namely, Gamma Ray (SGR and CGR), Deep Resistivity (RD), Formation Density (RHOB),
Neutron Porosity (PHIN), Sonic log (DT), and photoelectric factor (PEF) as input data and thin section/core-derived lithofacies were
used as target data in the ANN (artificial neural network) to predict lithofacies. The results show a strong correlation between the given
data and those obtained from ANN (R²= 95%). The performance of the model has been measured by the Mean Squared Error function
which doesn't exceed 0.303. Hence, neural network techniques are recommended for those reservoirs in which facies geometry and
distribution are key factors controlling the heterogeneity and distribution of rock properties. Undoubtedly, this approach can reduce
uncertainty and save plenty of time and cost for the oil industry.
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Introduction
The production performance of a reservoir
considerably depends on the characterization of the
reservoir. One of the main goal of geologic studies
is to apply suitable mathematical and statistical
procedures to obtain reliable information about
reservoirs (e.g. lithology, porosity, density,
hydraulic conductivity, electric resistivity, salinity,
and water/oil saturation), using either surface or
borehole measurements. Amongst which,
lithofacies identification is an important issue for
reservoir characterization. Description and
identification of lithofacies are essential, as they
provide qualitative information about reservoirs
which are, in turn, composed of various lithofacies,
each of which has its own porosity-permeability
characteristics (Negi et al., 2006). Conventional
methods, e.g. manual examinations of core and thin
sections in enormous boreholes require lots of
efforts, time, and cost a huge amount of money.
Alternative methods are the computer-based
intelligence methods (e.g. neural network, fuzzy
logic, genetic algorithm, etc.), which could be
utilized to provide reliable results (Nikravesh et al.,
2003). Artificial neural networks are well
appreciated in reservoir characterization because of
their advantage in extracting nonlinear relationships
between a sparse set of data (Banchs & Michelena,

2002). Such methods were successfully applied to
predict lithofacies from logs (Saggaf & Nebrija,
2003a; Bohling & Dubois, 2003; Maiti et al., 2007;
Qi & Carr, 2007), estimate logs response for missed
intervals (Saggaf & Nebrija, 2003b), and predict
porosity and permeability from 3D seismic data
(Wong et al., 1998; Trappe & Hellmich, 2000; Ali
and Chawathe, 2000; Lee et al., 2000; Ligtenberg
& Wansink, 2001; Mathisen et al., 2003; El-
Sebakhy et al., 2012). They are also used for
earthquake prediction (Feng et al. 1997), textural
identification of carbonate (Marmo et al., 2005),
shale identification and prediction (Wang & Carr,
2012), and fractured reservoir characterization
(Ouenes, 2000). This study attempts to apply a back
propagation neural network program to predict
lithofacies of the Sarvak Fm. based on well logs
data in the Marun oil field.

Geologic setting
The Sarvak Fm. (Albian to Turonian) is one of the
most prolific oil reservoirs in southwest Iran, in the
Zagros basin (James and Wynd, 1965; Motiei,
1993; Fig. 1). The Zagros basin predominantly
comprises thick intervals of carbonates, mudrocks,
and subordinate evaporitic horizons. These
successions are characterized by a marked
reduction in siliciclastic influx, the development of



112 Mohseni et al. Geopersia, 5(2), 2015

a carbonate platform to intra-shelf basin
topography, and deposition of basinal source rocks
somewhere in the basin. The sediments of the
Sarvak Fm. were deposited on platform and within
the intrashelf basin on the passive margin of the
Arabian Plate (Ziegler, 2001). The complex
tectonic history of the Zagros basin and Arabian
Platform (Alavi, 2004; Sepehr and Cosgrove, 2005;
Casini et al., 2011) led to wide variations in
reservoir characteristics of the Sarvak Fm. and its

equivalents (Rahimpour- Bonab et al., 2012), which
brought the formation of intrashelf basins and
paleohighs in the SW sector of the Zagros basin
(including the Dezful Embayment). The study area
is located at the Dezful Embayment (SW Iran), a
subdivision of Zagros fold- thrust belt. In this part
of the Zagros basin, the Sarvak Fm. is an important
reservoir along with the overlying Ilam Fm. which
comprises the upper part of the Bangestan group
(Fig. 2).

Figure1. (A) Generalized structural provinces of Iran, and (B) Location map of the study area

Lithostratigraphy
The Sarvak Fm. was deposited in a shallow marine
environment during Albian to Turonian (Motiei,
1993), which passed into a lower-energy setting
toward Fars and the Persian Gulf. However, in the
northwestern area of Lurestan and toward Iraq, the
Sarvak Fm. interfingers with the Garau Fm
(Bordenave, 2002). The nature of the upper
boundary of the Sarvak Fm. is variable (Fig. 2).

Deposition of conglomerates, breccias, iron
oxides, and accompanied disconformities in the
upper part of the Sarvak Fm. are evidence of local
uplift during the Late Cenomanian to the Turonian.
The lower boundary of the Sarvak Fm. with the
Kazhdumi Fm. is conformable and gradational and
is marked by a pronounced change from the shales
of Kazhdumi Fm. to the limestones of Sarvak Fm.
(James & Wynd, 1965).

Methods and Materials
Neural network analysis provides a method to
constrain lithofacies from the well logs. ANN is
analogous to biological nervous systems and
consists of an input layer, hidden layers, and an
output layer (Fausett, 1994). Neural networks are
often used when the relationships of parameters are
too complicated or require too much time to solve
via conventional methods (Aminian & Ameri,
2005). Neural networks can discover highly
complex relationships between several variables. A
neural network works as a learning process from
provided information, trains the data to form
certain patterns for each subject, then predicts
targets with the output model. In this study, we
used a single-layer neural network (back-
propagation) to predict the lithofacies from log
data. The most widely used learning algorithm for
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training of the neural network is the back-
propagation learning algorithm (Lim, 2003).

The architecture of an ANN includes a large
number of neurons organized in different layers, so
the neurons are in a succession connected by means

of adjusting weights (Fig. 4). The ANN learns by
repeated adjusting of the weight of inputs until the
results are similar to the correct outputs of the
training set.

Figure 2. Stratigraphic chart of the Cretaceous system of southwest Iran and adjacent areas (Bordenave, 2002)
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The database to be introduced to the neural
network consists of three groups: training, test, and
verification. The training set is used to train and
create the network. The actual output of the training
set data is used to develop the weights in the
network. The test set is used to evaluate the
predictive ability of the network. This is also
ensuring that the network would not memorize the
data. The verification set is used to evaluate the
accuracy of the newly built network by providing
the network with a set of data it has never faced. As
a result of the non-linear weighting, the neural
network can handle very complex problems. The
training phase was performed by back-propagation
learning algorithm. In general, we suppose there are

“n” number of inputs ( , , , ……. ) and
one output; the output (y) could be presented by the
following  relationship (equations 1 and 2):

Y f(net f [ (1)
and

net . (2)

where f(net) refers to activation or transfer function
and wn is the weight vector. In this study the
transfer function was tansig and logsig and the
architecture of the artificial neural network built for
this study was 7, 22, 7.

ANN is similar to the neural system of the
human mind. ANN comprises of numerous
processors (artificial neurons) which are designed
to transfer the signals (Bhatt & Hell, 2002). These
artificial neurons could be trained to learn,
remember and apply the results after their training
in a manner similar to human beings’ mental
system. ANN is broadly applied in engineering,
medical sciences, as well as petroleum industries
including log interpretation, reservoir
characterization, and secondary recovery
(Mohaghegh & Ameri, 1995). The numbers of the
layers transform the function of individual layers
and the numbers of the neurons; moreover, their
connections are controlled by the structure of the
AAN. The neurons are organized in a layered
structure, so each layer is responsible for a distinct
action. The input layers obtain the data and transfer
them to the middle layer. The middle (or hidden
layer) could process and analyze these data (Figs. 3
and 4). The output layer gets the results of the
middle layer, gives them a meaningful form, and

feeds them back to the system. The most important
part of the network is the processors which are
composed of combined and transfer functions. The
combined function can multiply various inputs by
their relevant weight, and then combine the results
to produce a digit. The effect of the weight of any
link is similar to the synopsis of biologic neurons
(Aminzade & de Groot, 2006). The processors have
a non-linear function which is called the transfer
function. The output of the combined function is
used as the input for the transfer function. The
transfer functions comprise of sigmoid Tangent
(Tansig), sigmoid logarithm (Logsig), and linear
purline function (Purlin). The relative function
between artificial neurons and the biologic
counterpart is expressed in Equation (3). In most
cases, a neural cell has an extra input which is
called Bias. Figure 3 is a mathematical model of a
neural cell in which the combined function, the
transfer function, weight of each input, and bias are
illustrated.
y= a[ ∑(wi xi)] (3)

Figure 3. Mathematical representation of a neural cell in the
network

Weights and bias could be adjusted in a network
to facilitate the network for better recognition of
the algorithms. If the sum weights of the input
signals exceed the value of b in Equation (4), the
neurons would be excited (Aminzade and de Groot,
2006).
O= ∑ Wi Xi- b (4)

There are two types of neural networks
according to the nature of the connection between
knots. These are called Feed-forward networks and
Feed-back networks. The latter is normally used in
oil industries, particularly for reservoir petrophysic
characteristics (Saggaf & Nebrija, 2003a, b).
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Figure 4. Architecture of the artificial neural network built for this study

Available data
Digital well logs (CGR, DR, RHOB, NPHI, RT,
and PE) were assembled from 13 wells in the
Marun oil fields. A total of 350 m of the cored
interval of the Sarvak Fm. from well #305 was
described. Core interpretations include lithofacies
type, depositional fabric (described in terms of
Dunham, 1962 classification), grain size, type of
porosities, and fossil content. The data of well #123
were used for the verification of the results.

Lithofacies classification and depositional
environments
Seven major lithofacies were recognized based on
petrographic examinations of thin sections from
cores of well #305 of the Sarvak Fm. in the Marun
oil field. The depositional environment and detailed
microfacies analysis of the Sarvak Fm. were
described by several researches (e.g., Taghavi et
al., 2006; Beiranvand et al., 2007; Farzadi &
Hesthmer, 2007; Ghabeishavi et al., 2010;
Hajikazemi et al., 2010, 2012; Razin et al., 2010;
Rahimpour-Bonab et al., 2012; Asadi Mehmandosti
et al., 2013). Seven major lithofacies (Fig. 5) are
recognized as: (1) dolomudstone, (2) floatstone, (3)
wackestone, (4) boundstone, (5) mudstone, (6) ooid
grainstone, and (7) packstone, deposited in 5
distinct facies belts on a carbonate shelf including
tidal zone, restricted lagoon, open lagoon, shelf
margin, and open marine. Our interpretation is

almost similar to those previously published for the
Sarvak Fm.

Here is a brief description of these 5 facies
associations. Facies association 1 includes
dolomusdstone/ mudstone lacking biota or sparse
bioclasts, which was deposited on a tidal
flat/supratidal zone. Facies association 2 includes
peloid Packstone/ grainstone and bioclast-peloid
wackestone to packstone. Green algae, milliolids
and some rounded intraclast imply a lagoonal
setting. Low faunal diversity and well-preserved
peloids suggest a somewhat restricted lagoon.
Facies association 3 includes bioclast floatstone to
wackestone with abundant rudistid bioclasts and
benthonic foraminifera. This is corralatable to SMF
No. 8 of Flugel (2010), which indicates an open
lagoon. Various bioclasts include large benthonic
formas (pseuduhyponinis sp., pseudolithonella
richelli, prealveolina sp., nezzazata sp, ostracoda,
coral and rudist clasts). Facies association 4
comprises of two microfacies (ooid grainstone and
coral boundstone to floatstone). Some large
intraclast and echinoids are also present. This
lithofacies represents a platform margin oolithic/
bioclastic buildup. Facies association 5 is
composed of sponge spicule bearing planktonic
foraminifera packstone to wackestone. This
lithofacies was deposited in an open marine setting.
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Figure 5. Photomicrograph of seven lithofacies types recognized from Sarvak Fm. in well # 305, Marun oil field (A) dolomudstone;
(B) floatstone; (C) wackestone; (D) boundstone ,(E) mudstone, (F) ooid grainstone and (G) packstone

Statistical data analysis
SGR, CGR, RT, NPHI, RHOB, DT, and PEF are
available well logs in the Marun oil fields.
Statistical analyses were performed (Table 1) and

the results were used to evaluate the predictor
variables for the neural network.

The histograms of SGR and CGR show that the
grainstone facies (lithofacies 6) has SGR and CGR
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logs value, varying from 15 to 20 and 8 to 12 API
units respectively, whereas values vary between 5
to 10 and 4 to 8 for the rest of the lithofacies
respectively (Figs. 6, 7). In terms of resistivity,
mudstone facies (lithofacies 5) has relatively high

values (Fig. 8). As shown in Figure 8, the floatstone
facies (lithofacies 2), packstone facies (lithofacies
7), and boundstone facies (lithofacies 4) display
various RT values.

Table 1. Value ranges of well logs data in the Marun oil field

Lithofacies SGR (API) CGR (API) NPHI (v/v)
RHOB
(gr/cm³)

DT (µs/ft) PEF (B/E) RT (mΩ)

Dolomudstone 10-15 4-6 0.2-2.1 2.54-2.61 54.6-61.5 4.92-4.94 158-58.4
Floatstone 0-30 4-14 -0.5-5 4.4-2.74 48.7-96.5 4.88-4.96 33-2000

Wackestone 5-25 4-16 0.3-2.3 2.62-2.72 51.5-56.3 4.92-5 17.9-200
Boundstone 0-15 4-10 0.4-2.7 2.64-2.7 47-61.5 4.92-4.96 131-2000
Mudstone 10-20 4-8 0-3 2.6-2.74 51-56.1 4.88-4.96 2000
Grainstone 10-25 4-12 4.6-11.68 2.54-2.6 60-66.02 4.86-4.88 12-352
Packstone 5-35 2-16 0.2-13.9 2.45-2.73 52.7-71.2 4.88-4.96 9.3-2000

Figure 6. Histogram of SGR vs. lithofacies

Figure 7. Histogram of CGR vs. lithofacies
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The average distribution of the sonic and neutron
log-derived porosity of these lithofacies shows that
the ooid grainsone (lithofacies 6) has a mean of
34% and maximum calculated porosity, compared
to the other lithofacies (Fig. 9), whereas lithofacies
4 has the minimum porosity (ave. 26.6%). Although

lithofacies of the Sarvak Fm. show significant
overlap, individually they represent relatively
distinctive well log responses. The overlap in log
response is well demonstrated in the cross plot of
DT vs. RHOB and CGR (Fig. 10).

Figure 8. box plot of RT and porosity vs. lithofacies

Figure 9. box plot of porosity vs. lithofacies
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Figure 10. Cross plot of DT vs. RHOB and CGR

Results
Core lithofacies were chosen as target to the ANN.
The training process of the ANN involved selection
of the structure (i.e. number of layers, number of
neurons, types of activation functions, etc.) and the
updating of the weights and biases, which were
performed by several learning algorithms.

ANN, with one hidden layer, was chosen by
established practice. Since there are seven inputs
with only one output, the structure of the input and
output layers is fixed. Hidden neurons with tansig
(nonlinearity) and output neurons with tansig
activation were chosen. The neural network was
trained to predict lithofacies of the Sarvak Fm.
Performance of trained ANN could be evaluated by
the post-training process which has been designed
for this type of analysis. The expected correlation
coefficient of those parameters should be close to
unity if targets (core-derived lithofacies) and
outputs are in good accordance. In this study,
reasonable results are obtained, as the correlation
coefficient between output data and targets is close
to 1, which indicates the efficiency and robustness
of this method. Figure 12 represents the correlation

coefficient of training that is equal to 0.96% (Fig.
11A).

Attempts were made to test the ANN model
through the evaluation of 350 core-derived data.
Many sensitivity analyses were carried out in order
to optimize the model in terms of the number of
hidden neurons, activation function, and learning
algorithm parameters. Figure 11 B shows the good
correlation coefficient of testing (0.95%) and the
correlation between the core lithofacies and the
ANN predicted lithofacies (Fig. 12). This high
value means the interpretations are well supported
by realistic core-derived data, as was expected.

In order to validate the predicted lithofacies by
ANN, the core of 120 m interval of the well #123 in
the Marun oil field was examined and the results
were compared with the lithofacies predicted by
ANN (Fig. 13). The correlation coefficient between
the core lithofacies and the ANN-predicted
lithofacies are presented in (Fig. 14). Obviously,
there is a strong relation between these variables as
the high value of R² (0.899) supports our proposed
approach.
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Figure 11. A and B cross plot of core derived lithofacies vs. predicted lithofacies from ANN training (A) and test (B)

Figure 12. Predicted lithofacies from ANN testing and core-derived lithofacies
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Figure 13. Predicted lithofacies from the ANN validation process and core-derived lithofacies

Figure 14. Cross plot of core lithofacies of well# 123 of the Marun oil field and predicted lithofacies from the ANN validation
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Conclusions
Lithofacies identification and classification is vital
in reservoir characterization. This study attempted
to use core and well log data to identify and predict
lithofacies by neural network. A total of 350 m core
of the Sarvak Fm. from well #305 were described.
The results of the predicted lithofacies were
compared to actual lithofacies in test and validation
process. Their accuracy was calculated as equal to
95% and 89% and their MSE equal to 0.293 and
0.403, respectively. The following conclusions are
obtained: the described core lithofacies display a
significant accuracy of lithofacies prediction in
comparison to neural network models in carbonate
reservoirs in the Marun oil field. This approach

provides a method to predict the characteristics of
lithofacies in carbonate reservoirs. The prediction
of lithofacies by the neural network from well logs
could improve our understanding of the facies
distribution and the patterns of carbonate reservoirs
and would save the time and cost of exploration.
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