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Abstract
Optimization of reservoir parameters is an important issue in petroleum exploration and production. The Ant Colony Optimization
(ACO) is a recent approach to solve discrete and continuous optimization problems. In this paper, the Ant Colony Optimization is used
as an intelligent tool to estimate reservoir rock properties. The methodology is illustrated by using a case study on shear wave velocity
estimation from petrophysical data by the linear and nonlinear ACO models. The results of this research show that the ACO is a fast,
robust and cost-effective method for rock properties estimation. It is proposed that ant colony optimization aids in future reservoir
characterization studies.
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Introduction
Reservoir properties characterization plays an
important role in the upstream sector of the
petroleum industry. To date, many researchers have
tried to establish a quantitative and qualitative
correlation between them and a set of geosciences
data such as geological, well logging and seismic
data. For this purpose, intelligent systems such as
neural networks and fuzzy systems have been
utilized as routine tools for reservoir parameters
estimation. For example, Kamali and Mirshady
(2004) and Kadkhodaie-Ilkhchi et al. (2009) used
expert systems including neural networks and
neuro-fuzzy systems to estimate total organic
carbon content from petrophysical data.
Kadkhodaie-Ilkhchi et al. (2010) utilized
techniques such as intelligent systems and Boosting
technique for rock recognition from drilling sensor
data. Several applications of expert system in rock
property estimation are reported by Mohaghegh
(2000), Nikravesh and Aminzadeh (2003), Rezaee
et al. (2007) and many other researchers.

The optimization algorithms such as simulated
annealing and genetic algorithms have become
popular in reservoir parameters optimization. The
Ant Colony Optimization (ACO) is a paradigm for
designing metaheuristic algorithms based on real
ants behavior. These ants deposit pheromones on
the ground in order to mark some favorable path
that should be followed by other members of the
colony. The ant colony optimization exploits a
similar mechanism for solving optimization

problems (Dorigo et al., 2006). In recent years, the
petroleum industry has witnessed rapid utilization
of ACO in solving optimization problems. Zerafat
et al. (2009) designed an ACO for Gas-lift
Allocation Optimization. Razavi and Jalali-
Farahani (2010) used ant colony algorithm for
history matching, determining the optimum number
of phase separators and separators pressure and
maximizing oil production in petroleum reservoirs.
Hajizadeh et al. (2011) developed an ACO for
history matching and uncertainty quantification of
reservoir models.

In this paper, the first application of the ACO in
a systematic approach for rock properties
estimation is reported. For this purpose, a modified
Ant Colony Optimization algorithm was developed
for the systematic estimation of shear wave velocity
from petrophysical data. The methodology is
applicable for any rock property estimation
problem from a set of predefined inputs. The
methodology presented in this paper is based on
other researcher’s work which is not novel in their
own right.

Ant Colony Optimization
The ant colony optimization is one of the most
recent techniques for solving optimization
problems. The inspiring source of ACO algorithms
are real ant colonies. The behavior that provides the
inspiration for the ACO is the ants’ foraging
behavior, and in particular, how they can find the
shortest paths between food sources and their nest.
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When searching for food, ants initially explore the
area surrounding their nest in a random manner and
while moving, they leave pheromones on the
ground which can smell. When choosing their path,
they tend to choose in probability, paths marked by
strong pheromone concentrations. As soon as an ant
finds a food source, it evaluates the quantity and
quality of the food and carries some of it back to
the nest. During the return trip, the quantity of

pheromone that an ant leaves on the ground may
depend on the quantity and quality of the food. The
pheromone trails will guide other ants to the food
source (Blum, 2003). More details on the ACO
could be found in Dorigo et al. (1996), Dorigo and
Stutzle (2004) and Blum (2005). Figure 1 illustrates
how communication among ants via pheromone
trails enables them find the shortest paths between
their nest and food sources.

Figure 1. An experimental setting that demonstrates the shortest path finding capability of ant colonies. Between the ants’ nest and the
only food source two paths of different lengths exist. In the four graphics, the pheromone trails are shown as dashed lines (modified
after Blum, 2003).

ACO algorithm
To simply understand how the ACO algorithm
works consider the schematic model explained in
Figure 1 (Blum, 2003). The simple ant model
consists of two points: vs (representing the ant’s
nest ) and vd (representing food source). Assume
two random links e1 and e2 between vs and vd. A
length of l1 is assigned to e1 , and a length of l2 to e2

such that l2> l1. e1 represents the short path between
vs and vd and e1 represents the long path. As real
ants deposit pheromone on their paths as they
move, the chemical pheromone trails are modelled
as follows:

An artificial pheromone value i is introduced

for each of the two links ei: i=1, 2. Such a value
indicates the strength of the pheromone trail on the

corresponding path. Finally, artificial ants, na, are
introduced. Each ant behaves as follows:
Starting from vs (i.e. the nest), an ant chooses with
probability:

,
21 




 i
ip i= 1, 2 (1)

between paths e1 and e2 for reaching the food
source vd. Obviously, if 1 > 2 , the probability of
choosing e1 is higher, and vice versa. For returning
from vd to vs, an ant uses the same path as it chose
to reach vd, and it changes the artificial pheromone
value associated to the used edge. Furthermore,
having chosen edge ei an ant changes the artificial
pheromone i as follows (Blum, 2003):

b) The foraging starts. In probability, 50% of the ants take the short
path and 50% take the long path to food source

c) The ants that have taken the short path have arrived earlier at the food
source. Therefore, when returning, the probability to take again the short
path is higher

d) The pheromone trail on the short path receives, in probability, a
stronger reinforcement and the probability to take this path grows.
Finally, due to the evaporation of the pheromone on the long path,
the whole colony will, in probability, use the short path.

a) All ants are in the nest. There is no pheromone in the
environment.
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i ← i + ,
il

Q
(2)

where the positive constant Q is the parameter of
the model.

In other words, the amount of artificial
pheromone that is added depends on the length of
the chosen path: the shorter the path, the higher the
amount of added pheromone. The foraging of an
ant colony is in this model iteratively simulated as
follows:

At each step (or iteration) all the ants are initially
placed in node, vs and then each ant moves from vs
to vd as outlined above. As shown in Figure 1 (d),
in nature the deposited pheromone is subject to
evaporation over time. This pheromone is simulated
in the artificial model as follows (Blum, 2003):

i ← ,).1( i i= 1, 2 (3)

The parameter  (0, ] is a parameter that
regulates pheromone evaporation. Finally, all ants
conduct their trip and reinforce their chosen path as
outlined above (Blum, 2003). As a result, ants will
find the shortest path during time. This
phenomenon forms the basis of solving discrete and
continuous optimization problems.

In order to show the performance of the ACO
algorithm, it was used to find the maximum points
of the function “f(x, y)=cos(2πx).cos(2πy)”. As
shown in Figure 2a, 200 ants are initially generated
on the surface of the function f(x, y). The results of
running the ACO algorithm are illustrated in Figure
2b where the maximum points of the function f(x, y)
are found using 200 ants after 50 iterations,
successfully.

ACO model for rock properties estimation
In this section, a general scheme to estimate
physical rock properties is presented by using ant
colony systems. The general form of the ant colony
optimization problem is P=(S, f) in which are given
a finite set of objects S (also called the search
space) and an objective function f: S→R that
assigns a cost value to each of the objects sS. The
goal is to find an object of minimal cost value. The
ACO problems could be defined in discrete or
continuous domains. Here, a continuous form of the
ant systems is used for rock properties estimation as
follows.

Assuming that there are n inputs parameters xi

which are used to predict the target rock property y,

then prediction error could be written as follows:

e=y-t(x1, x2, … xn) (4)

where t is the rock property prediction and could be
written in the linear and nonlinear forms as follows:

t(x1, x2, … xn)=α1.x1 + α 2.x2+…. α n.xn + α n+1

(linear) (5)

t(x1, x2, … xn)= α 1.x1
β1

+ α 2.x2
β2

+…. α n.xn
βn

+ α n+1

(nonlinear) (6)
where α 1, α 2, … α n, are coefficients of the
equations and α n+1, theconstant. Parameters β1, β2,
βn are exponents of the nonlinear equation.

The objective function for minimization by ACO
as the mean squared error (MSE) of the rock
properties predictions is defined as follows:

2

1
ijj ))-t(x(y

1



m

jm
MSE i=1, 2,… n (7)

where m is the number of predicted data samples
and n is the number of input parameters for rock
properties prediction. Running the ACO algorithm
to minimize error function (7) results in
coefficients, exponents and constants of the
equations.

Case study
The prototype field of this study is located in South
West Iran. The Asmari formation with limestone
lithology forms one of the main reservoirs of the
study area. In order to test the performance of the
ant colony approach for rock property estimation, a
case study is carried out on shear wave velocity
estimation from well log data. Normally, almost all
wells (even horizontal wells) are logged during or
after drilling. Shear wave velocity (Vs) is measured
using a DSI (Dipole Shear Sonic Imager) tool
which is available for limited number of wells due
to high costs of measurement. The Vs data play
important role in reservoir characterization
objectives such as lithology determination,
identifying pore fluid type and geophysical
interpretation.

Data for the study were obtained from two wells
penetrated into the Asmari formation where both
conventional well log data and DSI measurements
are available. The first well with 329 data points
was chosen for construction of the ACO models
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and data from the second well (263 data points)
were used to evaluate the reliability of the models.
Statistical analyses showed that there is a high
correlation between Vs data and sonic (DT),

neutron (NPHI) and density (RHOB) logs as
predictor parameters. The linear and nonlinear
ACO models were constructed as follows.

Figure 2. Ribbon plot showing the values of α1, α2, α3 and α4 for initial 200 ants generated in the range of [-1, 1]

Estimation of Vs using the linear ACO model
Equation 8 was used for the final estimation of Vs
using the linear ACO model.

VsACO(LIN) = α1 *Vp + α2 *NPHI + α3 *RHOB + α4 (8)

In this equation, parameters α1, α2 and α3 are
coefficients corresponding to Vp, NPHI and RHOB
inputs, respectively. Parameter α4 is constant for the
equation. VsACO(LIN) is the estimated Vs for the linear
ACO model.

The objective function to be minimized by ACO
was defined as MSE of the model data predictions
(9):





N

i
realLINACO VsVs

m
MSE

1

2
)( )(

1 (9)

where m is the number of model data, MSE is the
mean squared error and VsACO(LIN) is same as those
of Equation (8). Vs is the target value (measured
from DSI tool).

Firstly, 200 ants were generated and the initial
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pheromone value was set to 0.2. The initial search
range was chosen between the range of -1, 1.
Fitting coefficients of the linear Vs equation (α1, α2,

α3 and α4) for the initial 200 ants are displayed in
the ribbon plot of Figure 3.

Figure 3. An example of minimizing f(x, y)=cos(2πx).cos(2πy) through ACO algorithm used in this study. Two hundred ants are
initially generated on surface of function f(x, y) (a). Running ACO algorithm after 50 iterations returns maximum points of function
f(x, y). This example verifies performance of ACO developed in this study for rock property estimation.

Crossplots showing the correlation coefficient
between Vs and input well log data including Vp
(a), RHOB (b) and NPHI (c) are illustrated in
Figure 4a-c.

After running the ACO algorithm, the optimized
weight coefficients were applied to produce the
final output. MSE values updates after 200
iterations are shown in Figure 5. As shown in
Figure 5, the ant colony algorithm converges at
0.0187MSE. The ACO derived values for α1, α 2

and α3 corresponding to Vp, NPHI and RHOB
estimations are 0.2116, -0.1445 and 0.9461,
respectively. Constant α 4 was derived as -0.8378.
The overall estimation of Vs by the ACO for the
test data was calculated as follows:

VsACO(LIN)= 0.2116*Vp - 0.1445*NPHI +
0.9461*RHOB- 0.8378 (10)

Estimation of Vs using the nonlinear ACO model
The Equation 11 was used for final estimation of

Vs by the nonlinear ACO model.

VsACO(NLIN) = α1 *Vp
β1

+ α 2 *NPHI
β2

+ α 3 *RHOB
β3

+ α4 (11)
In this equation parameters α1, β1, α2, β2, α3 and

β3 are coefficients and exponents corresponding to
Vp, NPHI and RHOB inputs, respectively.
Parameter α4 is constant for the equation. VsACO(NLIN)

is the estimated Vs from the nonlinear ACO model.
The objective function to be optimized by ACO
was defined as follows:





m

i
realNLINACO VsVs

m
MSE

1

2
)( )(

1 (12)

where m is the number of model data, MSE is the
mean squared error and VsACO(NLIN) is same as those
of Equation 11. As with the linear model, 200 ants
were generated and the initial pheromone value was
set at 0.2. As shown in Figure 6 the ant colony
algorithm converges at MSE.
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Figure 4. Crossplots showing the correlation coefficient between Vs and input well log data including Vp (a), RHOB (b) and NPHI (c)
in the training well

Figure 5. Graph showing changes in MSE values of objective function versus Ant Colony algorithm iterations for linear model. ACO
algorithm is converged at MSE of 0.6143.
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Figure 6. Graph showing changes in MSE values of objective function versus Ant Colony algorithm iterations for nonlinear model.
ACO algorithm is converged at MSE of 0.6129.

After 200 iterations the ant colony derived
values for α1, β1, α2, β2, α3 and β3 are 0.0445,
1.6391, 0.0552, 1.6239, 1.5133 and 0.8321,
respectively. Constant α4 was derived as -1.3229.

The overall estimation of Vs by ACO for testing
data was calculated using Equation 13.

VsACO(NLIN)= 0.0445*Vp
1.6391

+0.0552 *NPHI
1.6239

+1.5133 *RHOB
0.8321

-1.3229 (13)

Results and Discussion
In this study, an ACO algorithm was developed for
rock property estimation from a set of available
input data. In order to show the performance of the
ACO algorithm, a case study of shear wave velocity
estimation from petrophysical inputs was carried
out. The ACO models were constructed in both
linear and nonlinear forms.

MSE of the linear ACO model for Vs estimation
in the testing data was 0.0087 which corresponds to
the correlation coefficient value of 0.943 (Fig. 7a).
Graphical comparison between the measured and
simulated Vs values for the testing data using the
linear ACO model is shown in Figure 8.

MSE of the nonlinear ACO model for the test
data is 0.0084 which corresponds to the correlation
coefficient value of 0.944 (Fig. 7b). A graphical
comparison between the measured and simulated
Vs values for the testing data using the nonlinear
ACO model is shown in Figure 9.

The results show that the performance of the
linear and nonlinear ACO models for Vs estimation
is close to each other. The study successfully

estimated the Vs with correlation coefficient of
0.94 from sonic, neutron and density logs which are
available for almost all drilled wells.

The objective function to be minimized needs to
be written in the form of error in rock property
estimation. The ACO algorithm can determine
coefficients, exponents and constants of the rock
property equations when the error reaches its
minimum value.

Neural networks are complex and advanced type
of regression equations. In order to make a
comparison with the ant colony system, a three
layered perceptron was employed to estimate Vs
from the same predictors used in the ACO model.
As shown in Figure 10, perceptron training stops at
epoch 7 where the validation error starts to
increase. The correlation coefficient between the
measured and neural network estimated Vs is 0.940
(Fig. 7c). The corresponding mean squared error
for neural network estimations is equal to 0.0092
(Fig. 11).

The ANN and ACO have quite different basics
and concepts; however, they reached closed and
high accuracy results for Vs estimation problem
which is a good confirmation in validating their
computational algorithms.

The ACO is a robust, fast and easy method to
solve for fitting coefficients of predetermined linear
and nonlinear Vs equations. In spite of the neural
networks in which many parameters need to be set
(e.g. number of hidden layers and their associated
neurons, transfer function, learning rate, training
algorithm, etc.), ACO requires a limited number of
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parameters to be chosen. Thus, the only
requirement for the algorithm is setting the number

of ants and their associated initial pheromone
fractions.

Figure 7. Crossplots showing correlation coefficient between measured Vs and estimated Vs from linear ACO model (a), nonlinear
ACO model (b) and neural network (c) in the testing well

As with the neural networks, genetic algorithms
have many parameters to be chosen correctly. Any
inaccuracy in setting parameters such as initial
guess, selection function, mutation function,
crossover function, crossover fraction, stopping
criteria, etc. will increase the risk of falling into
local minima. However, the ant systems, due to
simplicity of parameter setting and less model

parameters have a higher chance of obtaining
global minima.

It is expected that the artificial ants approach be
considered as a robust technique in future rock
properties estimation and optimization of reservoir
problems such as dynamic simulation, reservoir
monitoring and well placement.
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Figure 8. A graphical comparison between measured and estimated Vs from linear ACO model versus depth (left track) for testing
well. The corresponding error in Vs estimation is plotted in right track.

Figure 9. A graphical comparison between measured and estimated Vs from nonlinear ACO model versus depth (left track) for testing
well. The corresponding error in Vs estimation is plotted in right track.
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Figure 10. Updates in MSE of training, validation and testing samples versus network epochs for a three layered perceptron with five
hidden neurons. Validation error starts to increase at epoch 17 and training is fixed in MSE=0.0136.

Figure 11. A graphical comparison between measured and estimated Vs from neural network model versus depth (left track) for
testing well. The corresponding mean squared error in Vs estimation is plotted in the right track.
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Conclusion
In this study, a systematic approach is introduced to
estimate rock properties from a set of
predetermined available well log data. In this study,
the linear and nonlinear ant colony optimization
algorithms were developed for shear wave velocity
estimation from the available well log data
including sonic, neutron and density.

Normally, what intelligent system (ACO) is to
strengthen the relationships between dependent-
independent variables and to construct an
intelligent model which act much better than a
single regression with only dependent parameters.
The ACO model used in this study derived optimal
weights for each of the inputs used and provides a
more robust model to predict Vs by a combination
of input well logs.

Actually, rock physics models are developed for

specific formation in the world and they may not be
suitable to use for any other formation. To achieve
more realistic results, some tunings and optimal
parameter setting need to be carried out. ACO
model acts similarly to rock physics models only
with the difference that it derives the optimal
coefficients of S-wave velocity prediction equation
through using swarm intelligence which could be
considered as an alternative and robust model. The
ACO successfully derives fitting coefficients for
predetermined rock property equations. The ACO
models were compared to a neural network
approach. The ACO models with limited number of
parameters obtained high accuracy results in
comparison to the neural network approach in
which many parameters need to be optimized. The
results show that ACO is a robust, quick and easy
method to predict rock properties.
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