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Abstract
To evaluate the relationship between total organic carbon (TOC) and Rock-Eval S2 (petroleum potential) of petroleum source rocks, a
total of 180 outcrop samples from the black organic matter–rich facies of Mesozoic strata from a locality of southwest of Iran were
investigated using Rock-Eval VI pyrolysis and Leco Carbon Analyzer. The linear regression is applied to determine the correlation
between Leco TOC and Rock-Eval S1 and S2. The accuracy of the proposed model by this method has approximately 95% conformity
according to the Rock-Eval S2 and Leco TOC data (TOC = 0.492 + 0.174 S2). Then, by using the P value method, it was determined
that TOC is a function of S2 and S1 only causes the fluctuations. By means of sensitivity analysis of TOC with respect to S1 and S2, it
was shown that TOC has a linear relationship with S2 and does not have any noticeable correspondence to S1. The result of this study
can be used to evaluate petroleum potential (S2) of organic matter–rich facies by using TOC obtained by Leco Carbon Analyzer. For
the studied samples from the organic matter-rich facies, organic carbon richness is a quality and quantity index of petroleum potential.
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Introduction
The black organic matter–rich facies from the
investigated locality are hosted within a carbonate
succession, with the age of Jurassic to Cretaceous.

The Rock-Eval pyrolysis technique is the best
and the most practical method for assessing
petroleum generation potential of possible source
rocks. When applying Rock-Eval pyrolysis, a graph
of S2 (hydrocarbons generated by the pyrolysis,
measured in mg HC/g rock) versus TOC (total
organic carbon content of the rock by wt%) is used
an efficient tool (Langford et al., 1990; Yalçın Erik
et al., 2006). Using this tool, we can obtain the
correction for hydrogen index (mg HC/g TOC),
determine the type of organic matter present,
evaluate the adsorption of hydrocarbon by the rock
matrix, process the organic component of different
sets of samples, and can determine their petroleum
generation potentials.

The amount of organic matter in rocks is
described as TOC, and the relative ability of a
source rock to generate petroleum is defined by the
quality and quantity of its organic matter (Hunt,
1996). In dried sediments, total carbon content is
obtained. Leco Carbon Analyzer (Bernie et al.,
2010) is one of the most important methods
evaluating the TOC.

The aim of this article is to evaluate the
relationship between petroleum potential (S1 + S2)
and TOC of Jurassic–Cretaceous organic matter–

rich units from a locality of southwest of Iran. The
results of this study reveal a correlation between
TOC of the Leco Carbon Analyzer and S1 and S2 of
Rock-Eval pyrolysis of organic matter–rich units
using linear regression method, which determines
the appropriateness of rejecting the null hypothesis.

First, a brief description of the Rock-Eval
pyrolysis is given and then the regression method is
described. Using the regression analysis, a model is
proposed based on S2. In this study, we evaluated
the effects of two parameters of the model on the
response values (Leco TOC).

Methods and Materials
In this study, 180 outcrop samples were collected
from the organic matter–rich sediments (black
units) of southwest of Iran from Zagros Basin. To
measure and understand the relationship between
TOC and S1 and S2 values and to assess the
geochemical characteristics for correlating TOC and
S1 and S2, the techniques of Rock-Eval VI and Leco
analyses were used.

Leco Carbon Analyzer
Total organic carbon content of the samples was
determined using an elemental analyzer Leco. As
this apparatus burns rocks up to 1100°C, the
determination of total carbon is better compared
with those calculated by Rock-Eval pyrolysis,
especially for carbon-rich (coals) samples. To
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remove the effect of carbonate content of the
samples on the result of TOC, all samples were
treated by HCl. The Leco Carbon Analyzer shows
that the organic matter–rich facies have 0.48–26.4
wt% TOC.

Rock-Eval pyrolysis
The Rock-Eval VI pyrolysis technique is a rapid
efficient method to broadly evaluate the properties
of petroleum source rocks (Espitalié et al. 1985a,
1985b, 1986). Using Rock-Eval pyrolysis,
parameters such as quantity and type of organic
matter in a sedimentary rock and the level of
organic maturation were obtained. The geochemical
parameters obtained by Rock-Eval VI are as
follows: i) S1 fraction (mg HC/g sample; mostly
composed of small volatile molecules), in which the
amount of hydrocarbon released at 300 °C is
measured; ii) the S2 fraction (mg HC/g; composed
in part of larger thermally cracking molecules of
hydrocarbons derived from kerogen (e.g., algal cell
wall detritus)), in which peak S2 is the amount of
hydrocarbon released during temperature-
programmed pyrolysis (300–600°C); and iii) the S3

fraction (mg CO2/g; derived from oxygen-
containing organic molecules).

Regression analysis
Regression is a highly useful statistical technique
for developing a quantitative relationship between a
dependent variable (response) and one or more
independent variables (factors). The experimental
data are used on the pertinent variables to develop a
numerical relationship showing the influence of the
independent variables on a dependent variable of
the system. Throughout engineering, regression
may be applied to correlating data in a wide variety
of problems ranging from the simple correlation of
physical properties to the analysis of a complex
industrial system. If the relationship among the
pertinent variables is not known from theory, a
function may be assumed and fitted to experimental
data on the system. Often, a linear function is
assumed. In other cases where a linear function
does not fit the experimental data, the engineer
might try a polynomial or an exponential function.
In a large number of cases, theory produces
incomplete models. Regression analysis is used in
such cases to determine unknown coefficients in a
theoretical equation from available experimental
data.

Simple Linear Regression
In the simplest case, the proposed functional
relationship between two variables is:

Y = β0 + β1X + ε (1)
In this model, Y is the dependent variable, X is

the independent variable, and e is a random error
(or residual amount), which is the amount of
variation in Y not accounted for by the linear
relationship. The parameters β0 and β1 are called the
regression coefficients that are need to be estimated.
The variable X is not a random variable and takes
fixed values. It will be assumed that the errors ε are
independent and have a normal distribution with
mean 0 and variance δ2, regardless of what fixed
value of X is being considered. Taking the
expectation of both sides of Equation (2), we have:

E(Y) = β0 + β1X (2)
where the expected value of the errors is zero. For a
fixed value of X, the expectation in Equation (2) is
usually denoted by:

E(Y) = E(Y/X) = μY/X

Thus, we can write:

E(Y) = E(Y / X) = μY/X = β0 + β1X (3)
Equation (3) is called the regression of Y on X.

The only random variables in Equation (1) are Y
and ε. As the ε is normally distributed, the random
variable Y has a normal distribution with mean μY/X

= β0 + β1X and variance δ2. Geometrical
representation of the linear regression is shown in
Figure 1.

Figure 1. Geometric interpretation of linear regression

To estimate the relationship between Y and X, we
have n observations on Y and X, denoted by (X1,Y1),
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(X2,Y2), …, (Xn,Yn). From Equations (1) and (3), the
relationship between Y and X is given as:

Y = E(Y/X) + ε (4)
The objective is to estimate β0 and β1 and thus

E(Y/X) or Y in terms of n observations. If b0 and b1

denote estimates of β0 and β1, then an estimate of

E(Y) is denoted by .

P value
P value determines the appropriateness of rejecting
the null hypothesis. P values range from 0 to 1. The
P value is the probability of obtaining a test statistic
that is at least as extreme as the calculated value if
the null hypothesis is true. Before conducting the
analyses, alpha (α) level is set to 0.05. If the P value
of a test statistic is less than the alpha value, the null
hypothesis is rejected.

Because of their fundamental role in hypothesis
testing, P values are used in many areas of statistics,
including basic statistics, linear models, reliability,
and multivariate analyses among others. The key is
to understand what the null and alternative
hypotheses represent in each test and then to use the
P value to aid in decision making to reject the null
hypothesis.

For example, when a 2-sample t-test is
considered where the difference between the mean
strength of steel is tested from two mills based on
random samples from each mill, the null hypothesis
states that the two population means are equal,
whereas the alternative hypothesis states that they
are not equal. A P value below the cutoff level
suggests that the population means are different.

When regression analyses are performed on steel
strength where temperature is one of the
explanatory variables, a P value for each regression
coefficient is obtained. Here, the default test is to
determine if the coefficient for temperature is
different from zero. Therefore, the null hypothesis
states that the coefficient equals zero, whereas the
alternative hypothesis states that it is not equal to
zero. A P value below the cutoff level indicates that
the coefficient of temperature is significantly
different from zero.

The P value is calculated from the observed
samples and represents the probability of
incorrectly rejecting the null hypothesis when it is
actually true. However, it is the probability of
obtaining a difference at least as large as the one
between the observed value and the hypothesized

value through random error alone.

Determination of the model component
In this study, 180 samples were collected from the
organic matter–rich units. We will fit a multiple
linear regression model:

TOC = β0 + β1S1 + β2S2 + ε (5)
The least squares fit, with the regression

coefficients reported to two decimal places, for
Leco TOC and petroleum potential (S1+S2) of
Rock-Eval is as follows:

=0.639 + 0.169 (S1+S2) (6)
The determination of coefficient, denoted as R2,

indicates how well data points of an experiment fit
a model. It provides a measure of the observed
outcomes that are replicated in the model
(R2=94.5%), which indicates that 94.5% of
experimental data are matched with the regression
curve. Adjusted R2 has been modified for the
number of terms in the model. If the model includes
unnecessary terms, R2 can be artificially high.
Unlike R2, adjusted R2 may be smaller when terms
are added to the model. Adjusted R2 is used to
compare models with different numbers of
predictors. For the Leco Carbon Analyzer and
Rock-Eval data, the adjusted R2 is 94.4%, which is
a decrease of 0.1% (94.6%–94.5%). This model
suggests that the variability in Leco TOC increases
as S1+S2 increases.

The first three columns of Table 1 (10 data with
variable content of Leco TOC) present the actual
observations of TOC, the predicted or fitted values

of , and the residuals. Figure 2 plots the
residual values for TOC based on S1+S2. Figure 2-a
shows the normal probability plot of the residuals,
which indicates whether the data are normally
distributed, other variables are influencing the
response, or outliers exist in the data. Figure 2-b
shows the plot of standard residual versus predicted

value of , which indicates whether the
variance is constant, a nonlinear relationship exists,
or outliers exist in the data. Plots of the standard
residual versus frequency and observational order
that indicate whether the data are skewed or outliers
outliers exist in the data and whether there are
systematic effects in the data due to time or data
collection order are shown in Figures 2-c and 3-b,
respectively. More accurately, residual plotting is an
an integral part of regression model building. These
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plots indicate that there is a tendency for the
variance of the observed TOC to decrease with the
magnitude of TOC.

Sensitivity analysis of TOC with respect to S1

and S2

Table 2 lists the estimated coefficients for the
predictors. Linear regression examines the
relationship between a response and the predictors
(Table 2). To determine whether the observed
relationship between the response and predictors is

statistically significant, we need to:
- Use the first P value (Regression) to analyze

whether the regression coefficients are significantly
different from zero. If the P value is smaller than a
preselected α level, it can be assumed that at least
one coefficient is not zero. A commonly used α
level is 0.05.

- Use the second P value (Lack of Fit) to
determine whether the linear predictors alone are
sufficient to explain the variation in Response.

Table 1. Prediction Values, Residuals and other diagnostics
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Figure 2. Residual plots for TOC base on S1 and S2
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If the P value is smaller than a preselected α
level, it can be concluded that the linear predictors
are not sufficient to explain the variation in
response. In this case, higher order terms can be
considered. We could include the quadratic terms of
the predictors, one at a time, and reanalyze the data.

For the Rock-Eval data, the results can be
summarized as follows:

Table 2. Coefficients table

Predictor Coefficient P

Constant
S1

S2

0.4168
- 0.0934
0.177127

0.184
0.507
0.000

The relationship between the and the
predictor, S2 (P = 0.000), is significant.

The relationship between the and the
predictor, S1 (P = 0.607), is not significant because
the P value is higher than the preselected α level. In
this case, we can refit the model without this
predictor, examine the residuals, and then decide
whether it should be included. Therefore, new
regression model base on TOC and S2 is as follows:

TOC = 0.492 + 0.174 S2 (7)

If repeated values are observed at certain
settings of the predictors, the unexplained variation
can be divided variation due to pure error and
model inadequacy (Lack of Fit).

In 3-D plot of TOC versus S1 and S2 (Fig. 3),
which is determined by increasing S2, the TOC
increases, and this progress shows a linear behavior.
It should be noted that increasing S1 causes
fluctuations in the rate of TOC, which indicates that
S1 does not have any considerable effect on the
TOC.

The S2 versus TOC plot
The graph of S2 vs. TOC is an instructive path that
displays Rock-Eval and Leco Carbon Analyzer
data. The linear regression curve is used on the S2

vs. TOC graph for calculating hydrogen index (HI)
(Langford and Blanc-Valleron, 1990) and shows
the petroleum potential and the type of kerogen
present. For the organic matter–rich units, the
amount of HI is about 550 mg HC/g TOC
(pyrolyzable hydrocarbons are about 55% of TOC),
which is close to type II kerogen (Fig. 4).

Figure 3. plots of TOC versus S1 and S2 for the organic matter-
rich facies

In these organic matter–rich units, S2 and HI with a
high proportion show good oil-prone potential.

The regression lines in the S2 vs. TOC graph
pass through the origin because if we have very
small quantities of organic matter–yield
hydrocarbons during pyrolysis of S2 vs. TOC the
regression lines represent positive intercepts on the
x-axis.

This represents that a threshold amount of
organic matter must be present before enough
hydrocarbons are detected during pyrolysis
(Langford and Blanc-Valleron, 1990). For the
studied samples, there is no clear intercept of the
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S2–TOC plot, which implies that there is no mineral
matrix effect and not much enough inert organic
matter of the samples (Fig. 4).

Figure 4. S2 vs. TOC diagram for the organic matter-rich facies

In the set of samples with the same type of
organic matter, HI should have a constant value
(Langford and Blanc-Valleron, 1990). However, the
observation implies that HI apparently increases
with increased TOC (Katz, 1983).
In this study, for majority of samples (TOC > 8%),
the regression curve indicates that HI range of the
samples is mostly constant and there is no
considerable change with increasing TOC (Fig. 5),
indicating no substantial variation in the type of
organic matter during the deposition of the black
organic matter facies in the studied locality.

Figure 5. HI vs. TOC graph for investigated units

Conclusion
 A combination of linear regression and P value
methods is used to characterize the relationship of
Leco TOC and Rock-Eval pyrolysis S1 and S2 data
from organic matter–rich units. According to the
linear regression model, increasing S2 increases
TOC. This model fits approximately 95% to Leco
TOC and Rock-Eval pyrolysis data.
 In this article, to determine the parameters that
influence TOC, the sensitivity analysis and P value
method have been used and a new model based on
S2 was proposed, which has a linear relationship to
TOC. In all the models, remaining hydrocarbon
potentials (S2) and TOC have a direct relationship.
Using the regression equation, which is based on
TOC of the Leco analyzer, petroleum potential of
the source rocks can be simply evaluated without
Rock-Eval pyrolysis.
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