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Abstract 

This paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. 

This approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a 

practical electrofacies clustering. Porosity and permeability prediction is done on the basis of linear functions, succeeding the 

electrofacies clustering. At the start, an unsupervised neural network was employed based on the self-organizing map (SOM) technique 

to identify and extract electrofacies groups. No subdivision of the data set was required for the technique on account of the natural 

characters of the well logs that reflect lithological character of the formations. The second step was examining a supervised neural 

network which is designed based on the back propagation algorithm. This technique quantitatively predicts the porosity and 

permeability within the determined electrofacies. The final part of the study was calibration and comparison of the electrofacies 

clustering results with core and petrographic data. Based on the porosity and permeability maps at different depth levels, the target 

reservoir is classified into six electrofacies clusters (EF1-EF6) among which the EF5 and EF4 show the best reservoir quality. The EF6 

shows moderate reservoir quality, while the EF1 to EF3 show no reservoir quality. A propagation map was also prepared for each 

reservoir zone, regarding the conceptual depositional maps in the studied reservoir . 
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Introduction 

Precise mapping of the reservoir properties is a key 

product for reservoir characterization studies. In 

case of availability of the conventional well logs, 

artificial neural networks are capable of recognition 

of non-linear relationships between well log data 

and reservoir parameters. In general, the 

conventional methods fail to accurately classify and 

estimate the petrophysical properties of the 

carbonate reservoirs that is mainly due to formation 

heterogeneity and nonlinearity of its properties. In 

contrast, the artificial neural networks are found as 

powerful tools in reservoir nonlinearity 

examination (Al Moqbel et al., 2011). The 

reservoir of the South Pars Gas Field (SPGF) is 

famous for having a centimeter-scaled 

heterogeneity (Insalaco et al., 2006; Rahimpour-

bonab et al., 2009), hence the neural network has 

been applied here to decrease the impact of 

heterogeneity on the estimation of reservoir 

properties such as porosity and permeability. To do 

this, a two-step approach has been applied in the 

Permo-Triassic Kangan-Dalan formations 

(equivalent of Khuff Formation in Saudia Arabia) 

in the SPGF.  

At the start, the self organizing map (SOM) 

clustering algorithm is applied to classify the 

reservoir rocks. The SOM, with non-supervised 

learning, performs a feature projection non-linearly 

from a high-dimensional (input) into a low-

dimensional (output) space (feature space) while 

consisting a 2D array of neurons in an orderly 

fashion (Kohonen, 1989). This method classifies 

and visualizes the data and proposes a useful 

approach for characterizing the reservoir properties. 

The electrofacies clusters are the ultimate output of 

the SOM approach. 

Second part of the approach is to use a back-

propagation (BP) neural networking algorithm in 

order to estimate the porosity and permeability 

within each particular electrofacies. The BP is a 

feed-forward supervised network that is known as 

one of the most popular methods for prediction of 

the reservoir properties (Looney, 1997). The BP 

architecture is a hierarchical design consisting of 

fully interconnected layers or rows of processing 

units. It is an iterative process in estimation of 

neural connection strengths (the weights) and 
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minimizing the error function (Bishop, 1995; 

Kosko, 1996; Haykin, 1999). 

The main inputs for the neural network are well log 

data, among which NPHI, RHOB, DT and GR are 

selected for this study. To train the neural network 

models, seven appraisal wells were involved. 

 

Geological setting 

The South Pars Gas Field with its extension in 

Qatar (known as North Field), as world’s largest 

non-associated gas reservoir (Aali et al., 2006, 

Khoshnoodkia et al., 2011) is located in the Persian 

Gulf in the border of Iran and Qatar (Fig. 1). The 

shallow marine carbonates of Kangan and Dalan 

formations (Late Permian and Early Triassic in age 

respectively) are the main reservoir units of the 

SPGF. They are time equivalent of the Khuff 

Formation in the North Field (Alsharhan & Nairn, 

1997; Kashfi, 2000; Rahimpour-bonab et al., 2010).  

The late Permian Dalan Formation is about 680m 

thick in the South Pars, where is divided into three 

members including Lower Dalan and Upper Dalan 

carbonates with Nar Anhydrite in their between 

(Szabo & Kheradpir, 1978). The Early Triassic 

Kangan Formation is about 193m thick that 

consists limestone, dolomite, anhydritic dolomite 

and thin layers of shale (Aali et al., 2006). The 

Early Silurian Sarchahan Formation (black shales) 

is considered as the source rock for most oil and 

gas reservoirs of the Arabian Plate including the 

SPGF (e.g. Mahmoud et al., 1992; Rahmani et al., 

2010). General stratigraphy of the studied area is 

illustrated in Fig. 1. 

 

 
Figure 1: Location map of the South Pars Gas Field in the Persian Gulf (right) and stratigraphic position of the studied formations 

(left). 

 

Methods and Results 

The unsupervised and supervised neural networks 

have been adapted for electrofacies clustering and 

reservoir characterization in the studied reservoir. 

The unsupervised method (SOM) is mainly applied 

for classification of electrofacies, while the 

supervised approach (BP) is carried out for the 

porosity and permeability prediction. 

A suite of well logs were selected for the data 

analysis with regard to the quality of data and 

location of the appraisal wells. The input data 

include neutron (NPHI), density (RHOB), acoustic 

transmit-time (DT), gamma ray (GR) and 

photoelectric logs (PEF). Moreover, core data from 

seven appraisal wells (3400 core samples) were 

used to calibrate the determined permeability and 

porosity. Log and core data was hence correlated in 

the studied wells and the electrofacies clusters were 
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used to predict the porosity and permeability in the 

non-cored or blind wells.  

 

Electrofacies Classification 

As described above, a self-organizing map (SOM) 

neural network clustering was applied for 

determination and clustering of the electrofacies in 

the studied field. The basic concept of the SOM 

application is illustrated in Fig. 2. 

The SOM network was designed in the Matlab 

software for clustering of the well log data. This 

method implements an ordered dimensionality-

reducing map for data training, i.e. it provides 

projection of the multidimensional data into a 2D 

map and preserves the topology of this input data 

space (Kohonen et al., 1997).  

 

 
Figure 2: A Schematic diagram representing the methodology 

of SOM application in the electrofacies clustering 

 

The term “self-organizing” refers to the ability of 

learning and organizing data without involving the 

associated-dependent output values for the input 

pattern (Mukherjee, 1997). The SOM shares with 

the conventional ordination methods to develop a 

basic idea of displaying a high-dimensional signal 

manifold on a much lower dimensional network in 

an orderly fashion (usually a 2D space) (Astela et 

al., 2007). A SOM approach normally consists of 

neurons that are organized on a regular low-

dimensional grid. The number of neurons may vary 

from a few dozen up to several thousands. The 

neurons are connected to adjacent neurons by a 

neighborhood relation that dictates the topology or 

structure of the Kohonen (2001) Map. Hence, 

similar objects (in our case sampling points) should 

be mapped close together on the grid (Astela et al., 

2007). A training algorithm of SOM constructs the 

nodes to represent whole dataset and optimize their 

weights at each iteration step. In each step, one 

sample vector (x) from the input dataset is chosen 

randomly and the distance between the selected 

vector and all the weight vectors of the SOM are 

calculated. Accordingly, an optimal topology is 

expected. 

Based on the Kohonen (2001), training algorithm of 

the self-organizing map network is as follows: 

Let xk (with k=1 to the number of training patterns 

N) be the n-dimensional training patterns. Let wij be 

the neuron in position (i, j). Let 0 ≤ ∂ ≥1 be the 

learning rate and h(wij, wmn) be the neighborhood 

function.  

This neighborhood function assumes values in [0, 

1], and is high for neurons that are close in output 

space, and small (or 0) for neurons far away. It is 

usual to select a function that monotonically 

decreasing the non-zero to a radius r (called 

neighborhood radius) and zero from there onwards. 

Let winner be the winning neuron for a given input 

pattern. Then, the algorithm for training the 

network of each input pattern is: 

1. Calculate the distance between the pattern and 

all neurons (dij=||xk-wij||) 

2. Select the nearest neurons as winner wwinner 

(wij: dij=min(dmn)) 

3. Update each neuron according to the rule wij= 

wij+ h(wwinner,wij) ||xk-wij|| 
4. Repeat the process until a certain stopping 

criterion is met. Usually, the stopping criterion is a 

fixed number of iterations. To guarantee 

convergence and stability of the map, the learning 

rate and neighborhood radius are decreased f each 

iteration, and then they are converged to zero 

(Sfidari et al., 2012). 

The distance measured between pair of objects in 

this study is Euclidean distance. The unsupervised 

self-organizing map (SOM) is usually developed 

for the purpose of clustering dominant logfacies 

within the reservoir.  

 

Classification of well log data 

The SOM was trained with different numbers of 

map units and the optimum map size and 

normalization method were selected according to 

the minimum quantization error. The results 

together with the prerequisite that the number of 

neurons should be close to the number of the 

samples by equation (1), led to the selection of best 

unit map (Figs. 3, 4). The number of the output 

neurons in the SOM (the map size) is important to 

detect the deviation of the data. If the map size is 

small, it might not explain some important 



14 Sfidari et al.        JGeope, 2 (2), 2012 

differences that should be detected. Conversely, if 

the map size is too big, the differences are too 

small. The number of output neurons in the SOM 

can be selected using the heuristic rule suggested 

by Vesanto et al., (2000): 

nm 5                                                     Eq. (1) 

where m is the map size and n is the number of the 

training samples. Using this formula, the map size 

can be efficiently determined without trial and 

error. Results of the SOM analysis are presented 

through various visualizations of the self-organized 

map (Fig. 3). The five component plots, one for 

each input variable, are presented as rectangular 

maps with square nodes in Fig. 3. These 

visualizations reveal moderate correlation between 

DT and NPHI, and nonlinearity of correlation 

between PEF with other component plans (Fig. 3). 

 

 
Figure 3: Visualizations of the Component plots representing the normalized values of the five variables. Correlation between DT and 

NPHI can be confirmed from this SOM visualization. 

 

The SOM segregates the log data in to six 

particular clusters, based on the number of samples, 

that establish the individual cluster and the 

individual reservoir type. Using K-means algorithm 

and the C-index (Hubert & Schultz, 1976), six 

clusters are also appreciated (Figs. 4, 5). The color 

coding red is for cluster 3, yellow for cluster 6, 

light purple for cluster 4, magenta for cluster 5, 

green for cluster 2, and blue for cluster 1. The 

response of the given data to the map (signal hits–

BMUs number) for each cluster was summed as a 

cluster index value (Fig. 5). 

 

 

 
Figure 4: Top: C-index versus cluster number. Down: k-means clusters with hit histogram numbers (data density indicated by relative 

size of a circle) in U-matrix (left) and U-matrix indicates the distances between neighboring neurons (right). 

            DT                                          GR                                      NPHI                                        PEF                                        RHOB 
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Figure 5: Pairwise graphical visualization input log properties in each individual electrofacies from SOM output. 

 

The results of SOM clustering on generation of the 

electrofacies clusters are shown in Fig. 5. Based on 

the SOM visualization, C-index and the 

understanding about reservoir non-linearity 

(heterogeneity), the reservoir rocks were classified 

into six electrofacies (EF1 to EF6) associated with 

particular petrophysical properties. The EF5 that 

shows the best reservoir quality is characterized by 

the low amount of density, highest DT, high 

amount of neutron porosity (NPHI) and lowest GR 

response. The EF4 with good reservoir quality is 

marked by medium amount of RHOB response, 

medium to high DT, high NPHI and low GR. The 

EF6 that shows moderate to good reservoir quality 

is marked by medium to low response on density 

log (RHOB), medium DT, high neutron porosity 

(NPHI) and moderate GR. The EF1, that is 

considered as a non-reservoir rock unit, is 

recognized by high amount of RHOB response, low 

DT, low NPHI and high GR. Similar to the EF1, the 

EF2 is marked by poor to non-reservoir quality and 

is characterized by high RHOB response, low DT, 

low NPHI, and low GR. The EF3 with low to poor 

reservoir quality is marked by high RHOB, medium 

DT, medium NPHI and high GR. The graphical pair 

wise characterization of well logs for each 

electrofacies is illustrated in Fig.5. 

Vertical distribution of electrofacies extracted for 

one of the examined wells (well A) is shown in Fig. 

6. The EF5 with the highest porosity and 

permeability is mainly located in the depth interval 

of 3150 to 3200m. The EF4 with fair to good 

reservoir quality is distributed in the depth intervals 

of 3150 to 3210, 2990 to 3010 and 2900 to 2920m 

(Fig. 6). 

 

Porosity and Permeability Prediction 

Various neural network types have been used for 

field data analysis which are discussed in the 

literature (e.g. Huang et al., 1996; Cuddy, 1997; 

Huang et al., 1999; Rezaee et al., 2006; Sfidari et 

al., 2012). The neural network method is widely 

used by computer scientists, electronic engineers, 

biologists and psychologists but rarely used by 

geologist during the last decades. However, it is 

becoming popular method for prediction of field 

a b 

C d 
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data nowadays (e.g. Alizadeh et al, 2012, Sfidari et al, 2012).  

 

 
Figure 6: Vertical distribution of the logfacies, porosity, permeability and lithology in one of the studied wells (well A). 

 

Neural networks are also known as Artificial 

Neural Network (ANNs), Connectionism or 

Connectionist Models, Multi-layer Perceptrons 

(MLPs) and Parallel Distributed Processing (PDP). 

Despite the different terms and types, there are a 

small group of “classic” networks which are widely 
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used, on which many others are based. The back-

propagation neural networking algorithm (BP) is 

the most popular one that provides good results in 

the geological studies (Al Moqbel et al., 2011). 

Therefore, the BP method has been used in this 

investigation to predict the porosity and 

permeability values in the studied wells. The BP 

neural network is a multi-layered feed-forward 

neural network that comprises input, hidden and 

output layers (Fig. 6). 

 

 
Figure 6: The structure of a BP neural network, including 

input, hidden and output layers. 

 

Mathematically, neuron j has two equations for 

summation and activation as shown below: 

k pj
= x pi

k

i
w ji

1
              Eq. (2) 

)(  pjk pjfz pj              Eq. (3) 

 

Were x p1
, x p2

, . . . , x pN
, are the input logs, w j1

, 

w j2
, . . . , w jK

 are the synaptic weights of neuron 

j within total of  N samples that connect neuron in a 

layer to the neuron in the next layer, k pj
 is the 

linear combiner output,  pj
 is the threshold, f is the 

activation function (sigmoid function) for example 

in this paper for each node a sigmoid function is 

used, i. e., )1/(1 ef
x

x


 , and z pj

 is the output 

porosity or permeability from the neuron.  

In general, there are four steps in the training 

process: 

Step1: Preprocessing and initializing the weight 

values. Preprocessing data in this study achieved by 

the method discussed in section 3.1. Before training 

a network, the weights and biases must be 

initialized. In order to avoid the result located in 

flat area, random weight values are selected.  

Step 2: For input sample, outputs of arbitrary 

node in both hidden layer and output layer (in 

forward propagation) are calculated. 

Step 3: Errors of hidden layer and output layer 

(in backward propagation) are calculated. 

Step 4: Weight values according to error 

function are adjusted until the minimal error is 

achieved. The errors of the nodes of the output 

layer are back-propagated; this process gives the 

error BP neural network its name (Rumelhart & 

McClelland, 1986).  

The individual BP net is adapted here for each 

logfacies extracted in the clustering step. For 

prediction of porosity and permeability of the 

reservoir, the networks are trained using 

input/output pairs in the four wells. Three input 

logs (NPHI, RHOB, and DT) are feed in to the 

network to estimate the reservoir porosity and 

permeability. The correlation between cores 

porosity and permeability with estimated values in 

each logfacies is illustrated in Fig. 7 and Table 1. 

The overall correlation is approximately 0.908 and 

0.86 for porosity and permeability, respectively.  

 
Table 1. Correlation of predicted porosity and permeability with those available from the cores. Per.=permeability, Por.= porosity 

Facies DT NPHI RHOB 
MSE_

Per 

MSE_Po

r 
R_Per R_Por Epoch Distribution based on lucia classification 

1 48.1 .040 2.85 .011 .00100 .84 .912 12 Non-reservoir quality 

2 48.3 .051 2.88 .019 .00100 .86 .910 6 Non-reservoir quality 

3 50.1 .121 2.70 .008 .00050 .88 .930 8 Non to bad reservoir quality 

4 57.0 .690 2.40 .010 .00073 .84 .920 7 
Mainly class 3 and som class 2 with good reservoir 

quality 

5 70.0 .112 1.80 .014 .00910 .85 .880 9 Class 1 and 2 with best reservoir quality 

6 56.3 .153 2.60 .009 .00400 .89 .900 5 
Wid e lange distribution with good to moderate 

reservoir quality 

Sum 54.9 .194 2.53 .010 .00270 .86 .908   
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Validation of the results was done prior to 

generating the porosity and permeability values in 

the non-cored intervals and wells. This is to ensure 

that the network is generalizing not over-fitting. A 

good way for validation of the results is the take-

one-out approach, i.e. excluding some wells in the 

training stage (3 wells in this study). The networks 

are trained by data from four wells for each 

electrofacies. The accuracy of the networks is 

evaluated by comparing the predicted results with 

the actual well data at the location of excluded 

wells (Figs. 7, 8). Once the networks are fully 

trained and validated, the neural network was 

applied to field data in order to estimate the 

porosity and permeability in non-cored wells or 

intervals. 

Discussion  

In general, the carbonate reservoirs show more 

scattered porosity and permeability values than 

their siliciclastic counterparts. Such characteristics 

make their lateral and vertical prediction hard from 

petrophysical logs. The porosity and permeability 

of the carbonate reservoirs are affected by 

depositional environment of the original facies, 

diagenetic overprints and their sequence 

stratigraphic position (Rahimpour-Bnab et al, 

2008).  

The porosity/permeability cross-plot for one of the 

studied wells (well A) is shown in Fig. 9. The 

original rock fabric is compared with the Lucia 

rock fabric classification chart (Lucia, 1999). 

 
Figure 7: Comparison between true measured and predicted porosity in 3 tested wells. 

 

Well C         Well D        Well F 

 



Electrofacies clustering and a hybrid intelligent based method for porosity and permeability         19 

 
Figure 8: Comparison between true measured and predicted permeability in 3 tested wells. 

 

Such comparison represents a scattered plot 

indicating a heterogeneous formation. Fine scale 

fluctuations in sea level, cause of centimeter-scaled 

variations of depositional facies, is supposed to be 

the source of mentioned heterogeneity. 

Accordingly, the original rock fabric varies 

significantly in the space and results in the 

scattering of reservoir properties. In this study, the 

SOM method has been adapted to decrease the 

formation heterogeneity and reduce the amount of 

non-linearity between porosity and permeability. 

Once the electrofacies determination was 

implemented for all studied wells, the resulted 

electrofacies were compared with the original rock 

fabric achieved from petrographical studies. In 

addition, each electrofacies was labeled based on  

 
Figure 9: Porosity and permeability cross-plot for well A in the 

studied field. The plot shows no distinct relation between 

porosity and permeability, as data is scattered in all Lucia 

porosity-permeability classes. 

Well C        Well D       Well F 
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its reservoir properties and was compared with the 

porosity and permeability obtained from the cores 

(Fig.10). 

 

 

 

 
Fig. 10. Porosity and permeability cross-plots of the studied electrofacies. EF1 with the lowest porosity and low permeability (a), EF2 

with low porosity and lowest permeability(b), EF3 with low to moderate porosity and permeability (c), EF4 with a high porosity and 

moderate permeability (d), EF5 with highest porosity and permeability (e) and EF6 with a wide range of porosity and permeability 

values (f).  

 

Our observation showed that the EF5 is mainly 

characterized by grain-dominated fabrics including 

dolomitized and non-dolomitized grainstone, ooid 

grainstone and grain-dominated packstones. The 

last showed the best reservoir quality among the 

reservoir rocks. The EF4, which showed fair to 

good reservoir quality includes wackestones, 

mudstones, mud-rich packstones, and tight 

a b 

c d 

e f 
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grainstones. Dissolution is the main factor 

controlling the reservoir quality in the mentioned 

electrofacies. 

The EF6, which shows a fair to moderate reservoir 

quality, was found in variety of forms including a 

tight mudstone to wackestone, anhydrite cemented 

grainstone, and highly cemented dolomites. The 

EF3 which is considered as a poor reservoir rock, 

consists of anhydrite and tight mudstone, highly 

cemented dolomites and some grainstones. The EF1 

and EF2, with non reservoir quality is comprised of 

anhydrite, tight wackstone, mudstone and anhydrite 

cemented grainstones.  

The studied reservoir is supposed to be deposited in 

a shallow water carbonate ramp (Insalaco et al., 

2006). Relative sea level change is a key process 

which affects the porosity and permeability in the 

carbonates (Jacquin et al., 1991). The late 

transgressive (late TST) and early highstand (early 

HST) phase in the carbonate platform is 

characterized by massive barrier settings mainly 

composed of grain supported facies including 

bioclastic oolitic grainstones and packstones. These 

settings showed high porosity and permeability 

values and are found within the EF4 and EF5 rock 

classes. They coincide with Lucia rock fabrics 

classes 1 and 2 and are recognized by low RHOB, 

high DT and high NPHI on the electrical logs. EF1, 

EF2 and EF3 are supposed to be developed in the 

sabkha and lagoon sub-environments during the 

late highstand (late HST) early transgressive (early 

TST) phase. These are poor quality to non-reservoir 

rocks and are characterized by high RHOB, low 

NPHI, low DT and high GR on the well logs. 

After application of unsupervised learning method 

for clustering, a supervised learning was used for 

porosity and permeability prediction within each 

electrofacies. Results from this analysis on the 

seven wells propagated in the framework of fence 

diagrams (Fig. 11). 

 

 
Figure 11: The electrofacies fence diagram passing through studied wells. 

 

Conclusions  

A carbonate reservoir characterization based on 

well log data is discussed in a two-stage approach 

using unsupervised and supervised neural network 

algorithms. The unsupervised self-organizing map 

is developed for the aim of clustering log responses 

into reservoir electrofacies. This classification does 

not require any further subdivision of the dataset 

but follows the log measurements indicative of 

mineral and lithofacies characteristics of the rocks. 

On this basis the SOM clustering of the studied 

rocks fall in to six different classes. A good 

correlation between the corefacies and determined 

electrofacies was observed.  

Use of the back-propagation neural network 

method for the estimation of porosity and 

permeability in the individual electrofacies 

provided satisfactory results. Validation of the 
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results makes certain that the application of neural 

network is generalizing not over-fitting. A good 

way for validation is found the take-one-out 

approach. The accuracy of the networks was 

evaluated by comparison of the predicted results 

with the actual well’s data at the excluded wells. 

The unsupervised and supervised learning 

generated more accurate results for estimation of 

porosity and permeability, where core data are not 

available.  
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