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Abstract 
Climate change is one of the most significant challenges for some arid and semi-arid regions, potentially 
limiting access to water resources in the future. Integrated water resource management in these areas 
could be a viable approach to adapt the impacts of climate change. This study examines the effects of 
climate change on the surface and groundwater resources of the Khorramabad River Basin using the 
MODFLOW and WEAP models. Initially, the current conditions of surface and groundwater resources 
were simulated monthly using the WEAP and MODFLOW models for the statistical period from 
October 2010 to September 2023. The two models were then linked, yielding values of NSE=0.87, 
RMSE=0.65, and R²=0.97, indicating the acceptable performance of the WEAP-MODFLOW model in 
simulating surface and groundwater. Subsequently, the status of surface and groundwater resources was 
projected for the future (2025–2060) under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. The results 
from these scenarios show a decline in annual average precipitation and an increase in minimum and 
maximum annual temperatures. According to the results of the integrated WEAP-MODFLOW model, 
the annual average river discharge, groundwater levels, and aquifer storage will decline under SSPs 
scenarios compared to the baseline period. Therefore,  Climate change will hinder the availability of 
drinking and industrial water. Constructing the Makhmalkouh Dam could nearly fulfill the water 
demands for both drinking and industrial sectors across all three SSPs scenarios. This dam's construction 
would also mitigate groundwater level drawdown and increase aquifer storage relative to a scenario 
without the dam. 
 
Keywords: Climate Change, Integrated Modeling, WEAP-MODFLOW Model, Makhmalkouh Dam, 
Khorramabad River Basin. 
 
Introduction 
 
Global population is projected to reach 9.7 billion by 2050, increasing water demand for 
agriculture, industry, and household uses, resulting in excessive water exploitation, quantity 
and quality reductions, and climate change (Singh & Panda, 2012; An-Vo et al., 2015; Sabale 
et al., 2022). Climate change severely affects accessible water resources, particularly in arid 
and semi-arid regions, leading to significant reductions in available surface water (Marchane et 
al., 2017; Caloiero et al., 2018; Ashofteh et al., 2024). This reduction increases groundwater 
use, further depleting aquifer storage (Hssaisoune et al., 2020; Hardi et al., 2022). Iran, located 
in an arid and semi-arid region with a growing population, expanding urban areas, and 
developing industrial and agricultural sectors, faces water scarcity and limited water resources 
(Hashemi et al., 2018; Ostad-Ali-Askari, 2022; Sheikha-BagemGhaleh et al., 2023). In such 
regions, surface and groundwater resources are two primary systems meeting water demands, 
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and conjunctive use of these resources is a potential strategy to address declining water supplies 
(Schoups et al., 2006; Dehghanipour et al., 2019; Milan et al., 2023). 
    Today, water resource management emphasizes the conjunctive use of surface and 
groundwater resources, an effective tool to address water shortages in drought conditions and 
achieve sustainable development goals (Sabale et al., 2022). Although existing water resource 
management systems can handle annual variations, they face challenges in addressing long-
term trends. Evaluating the long-term impacts of climate change on water resources is essential 
for effective future management strategies (Serrat-Capdevila et al., 2007; Zhang, 2015). 
Neglecting the impacts of climate change may introduce bias in management strategies for 
conjunctive water use under future climate conditions. Therefore, optimizing water resource 
management, balancing water demand and availability, and ensuring sustainable extraction and 
efficient water use are crucial (Ragab & Prudhomme, 2002; Bahir et al., 2021; Hadri et al., 
2022). Evaluating the impacts of future conditions (climate, land use, water demand, adaptation, 
etc.) on water systems requires a coupling of hydrological and hydrogeological processes 
(Pulido-Velazquez et al., 2015). Hydrological and hydrogeological integrated modeling can 
provide more realistic outcomes. 
    Integrated water resource modeling was identified as a link between various scientific 
disciplines and complex environmental issues, such as climate change, in the mid-1980s 
(Akhtar et al., 2013; Panahi et al., 2021). Early research on coupling climate, hydrological, and 
hydrogeological aspects includes studies such as Allen and Scibeck (2004), Goderniaux (2011), 
and Droubi et al (2008 a, b). Recently, extensive research has investigated the impacts of 
climate change on surface and groundwater resources using integrated models for holistic water 
resource management. For example, Hadded et al (2018) assessed the climate change impacts 
on the Zeuss-Koutine aquifer in southeastern Tunisia using a decision support system (DSS) by 
establishing a dynamic link between WEAP (Water Evaluation and Planning) and MODFLOW 
software. Their predictive scenarios indicated that the Zeuss-Koutine aquifer is highly sensitive 
to climate change, potentially causing further groundwater level reductions compared to 
reference scenarios by 2030. Guevara-Ochoa et al (2020) implemented a coupled hydrological-
hydrogeological model (SWAT-MODFLOW) under climate change scenarios to quantify the 
spatial-temporal dynamics of water balance and GW-SW interaction in the upper creek basin 
of Del Azul in Buenos Aires. Results showed that annual aquifer discharge to the river could 
increase by 5% under RCP 4.5 and 24% under RCP 8.5. River recharge to the aquifer also 
showed a 12% increase under RCP 4.5 and a 5% decrease under RCP 8.5. Olivos and Méllo Jr 
(2023) studied the conjunctive use of surface and groundwater in urban-rural watersheds of the 
municipality of São Carlos and assessed the impact of climate change scenarios on the system. 
They used a combination of the WEAP model and the RCP85 and RCP45 scenarios in their 
study. The simulated climate scenarios showed that the pressure on groundwater in the region 
could be challenging due to the gradual depletion of resources affecting the sustainability of the 
system, with the flow of major rivers with a 95% percentile showing a 20% decrease in some 
cases. The results of the study showed that this modeling approach can be used in other river 
basins to manage supply and demand scenarios.  Sheikha-BagemGhaleh et al (2023) examined 
the impacts of climate change on the surface and groundwater resources in Mahabad using 
WEAP and MODFLOW models. Their findings revealed that, without effective changes, this 
region’s water resources would face significant challenges due to climate change in the near 
future. Mundetia et al (2024) assessed groundwater sustainability under climate change 
scenarios using a coupling of SWAT and MODFLOW models. Their study results showed that 
the average recharge in RCP 4.5 would decrease from 119.4 mm in the 2011-2020 decade to 
57.30 mm in the 2040-50 decade and 108 mm in RCP 8.5, which would significantly reduce 
groundwater resources. Rahimi Jamnani et al (2024) explored future water supply and demand 
impacts on surface and groundwater resources under climate change in the Qorveh-Dehgolan 



 

 

sub-basin using a combined WEAP-MODFLOW-ML model. Results indicated that the 
groundwater level in future periods is expected to decrease by approximately 1.2 meters 
annually compared to the baseline period. This decline would reduce reservoir inflow by about 
25%, leading to a 65 million cubic meter water reduction by 2045. 
    The effects of climate change on surface and groundwater resources of the Khorramabad 
basin have been studied in the research of Ashofteh et al (2024) and Moghaddam et al (2023). 
However, given the vagueness  in their studies (according to the authors of this study), we again 
studied the effects of climate change on surface and groundwater resources of the central plain 
of Khorramabad in order to obtain more accurate results. Among the shortcomings of the 
aforementioned studies are the following: 
      In the mentioned studies, the base line period of the simulation is 1971-2000 and the forecast 
period is 2040-2099. There is a long-term gap (2001-2040) between these two periods. The 
time gap in the studies (especially for recent decades) due to the variability of time-dependent 
parameters in hydrological and hydrogeological processes will lead to incorrect estimation of 
these parameters and, as a result, undesirable effects on the results. Therefore, according to the 
above, we used a continuous time period (2010-2060) in all modeling stages for the base period 
and the future. 
      The modeling period for MODFLOW is 1971-2000, while according to the available data 
from observation wells, obtained from the Lorestan Regional Water Company, this data is 
available from 1995 onwards. Since the MODFLOW simulation is based on real observation 
data, we ran the MODFLOW model based on observational data for the time period October 
2010 to September 2020. The reason for choosing this time period was the availability of 
complete information from 8 observation wells in this period. 
      In the aforementioned studies, the outputs of the WEAP model were used as inputs to the 
MODFLOW model. As we know, in the WEAP model, the groundwater node represents the 
aquifer and spatial changes in groundwater levels are not shown. In our study, we used the link 
between the WEAP and MODFLOW models and invoked the MODFLOW model in the WEAP 
software environment. This allows interactions and changes in surface and groundwater levels 
to be calculated on a cell-by-cell basis, providing more accurate and realistic results. 
      As we know, the MODFLOW model must use continuous time series to examine the effects 
of climate change. Because input changes in each month affect the next month. In the 
aforementioned studies, authors used time-slice approach for evaluating change factors while 
they show the results as time series.We used the transient change factor approach to generate 
continuous time series available in the literature. 
    Considering the decline in surface water resources in the Khorramabad River Basin, 
groundwater uses across sectors, and decreasing groundwater levels in plains due to excessive 
aquifer extraction, it is crucial to evaluate climate change impacts on the basin’s water 
resources.  This study comprehensively analyzes the impacts of climate change on surface and 
groundwater resources of the Khorramabad Central Plain aquifer using the WEAP-
MODFLOW linked model. It is also the first time that the consequences of the construction of 
Makhmalkouh Dam, on drinking water supply, industry, and water resources, have been 
assessed under climate change scenarios and shared socio-economic pathways (SSPs). 
 
Materials and Methods 
 
Data collection is one of the primary and essential steps in conducting any research. The 
required data for this study were obtained from the Lorestan Province Agricultural Jihad 
Organization, Lorestan Regional Water Company, Lorestan Natural Resources and basin 
Management Organization, Lorestan Meteorological Office, and the National Meteorological 
Organization of Iran. 



 

 

Study Area 
 
The study area encompasses the Khorramabad River basin, which is part of the permanent 
Khorramabad River basin. This basin, a sub-basin of the Karkheh River, includes a main plain 
(central plain) and several scattered smaller plains, such as Dehpir, Kamalvand, and 
Khorramabad plains. The central plain is elliptical, stretching approximately 25 kilometers in a 
northwest-southeast direction, with coordinates ranging from 48°21′E to 49°08′E longitude and 
from 33°13′N to 33°44′N latitude, located in the southern and southwestern areas of 
Khorramabad. The average elevation of the area is 1,903 meters, covering a basin area of 2,503 
Km2, with the central aquifer in Khorramabad plain occupying about 104 Km2 (Fig. 1). The 
basin's outflow is directed into the Cham-Anjir River. The study area receives an annual average 
precipitation of 508 mm, with an average temperature of 17.2°C (based on 50 years of data, 
1971–2020). The geological formations within the Khorramabad River basin date from the late 
Mesozoic to the present era and include the Telezang, Amiran, Kashkan, Asmari-Shahbazan, 
Gachsaran, Aghajari, Bakhtiari, and alluvial formations. The Amiran and Kashkan formations, 
with low permeability, are exposed in the eastern section, while the Asmari formation and the 
Bangestan Group cap the large Sefidkuh anticline, which has excellent permeability. 
Additionally, the Bakhtiari formation is exposed in the northeastern part, and the Kashkan, 
Gachsaran, and Asmari limestone formations are found in the southeastern area.  
 
Groundwater Flow Modeling 
 
In this study, groundwater flow modeling was conducted using the GMS software and 
MODFLOW code. MODFLOW is a 3D finite difference groundwater flow model. 
Groundwater flow within an aquifer is simulated in MODFLOW using a block-based finite 
difference approach. The partial differential equation (Equation 1) describes the groundwater 
flow in each network. 
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In equation (1), h is the hydraulic head (m) and is an independent variable. 𝐾௑௑, 𝐾௬௬, and 
𝐾௭௭represent the hydraulic conductivity (m.day-1) in the x, y, and z directions, respectively, SS 
represents the specific storage coefficient, which is a dimensionless quantity, and the letter W 
represents the supply or discharge and its unit is per day (1/day). 
 

 
Figure 1. Geographic location of the study area 

 



 

 

    MODFLOW is used to simulate and predict groundwater conditions and groundwater-
surface water interactions. The first step in groundwater modeling studies is to create a 
conceptual model. The conceptual model involves defining the model boundaries, hydro-
stratigraphy units, flow system, and water budget preparation (Mirzaee et al., 2023; Mirzaee et 
al., 2022). The next step involves converting the conceptual model into a numerical model, 
wherein various data inputs are coded into a suitable numerical model in MODFLOW based on 
a grid network. After constructing the conceptual model and selecting the appropriate computer 
code, model construction begins. This involves spatial grid design, determining time steps, 
specifying boundary conditions, and assigning aquifer parameters and hydrological stresses. In 
most cases, model parameters need to be refined after construction and design to enhance the 
model's results by estimating a close relationship between observed and predicted values, a 
process known as calibration (Patil et al., 2020). Following calibration, model validation is 
required. If the validation and predictive capability are proven within acceptable independent 
test limits, then the model validation is considered successful. The next step involves analyzing 
the model's sensitivity to parameter variations. Finally, to evaluate the calibrated and validated 
model's accuracy, three parameters-Mean Error (ME), Mean Absolute Error (MAE), and Root 
Mean Square Error (RMSE)-are used, reflecting the model's performance in estimating 
simulated variables compared to observed values. 
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In the above equations: ℎ௦ represents the hydraulic head simulated by the software, ℎ଴ is the 
hydraulic head of the observation wells in the plain, and 𝑛  denotes the number of piezometers 
(Mirzaee et al., 2023).  
 
Linking WEAP and MODFLOW Models 
 
WEAP is a computer modeling tool for integrated water resource planning, developed by the 
Stockholm Environment Institute (Tellus Institute) in the United States. WEAP functions as an 
integrated decision support system (DSS) designed to assist water planning by balancing water 
resources across multiple users (SEI, 2019). 
    The general approach to developing a WEAP model involves several stages. Initially, the 
spatial boundaries of the study area and the temporal scale of the system modeling process must 
be defined. Boundaries are typically delineated by basin areas, such as rivers or springs. Based 
on this definition, the elements of the system (e.g., supply and demand sites, reservoirs) are 
identified and linked via transfer or diversion pathways. Data are assigned to flow paths, 
transfer links, and supply-demand sites. After data entry, flow quantification and model 
calibration are performed. Following calibration, the model requires validation. To evaluate the 
accuracy of the developed model, metrics such as the Nash-Sutcliffe Efficiency (NSE), RMSE, 
and coefficient of determination (R²) can be used. Finally, by defining various scenarios, a 
comprehensive analysis of water-related issues can be conducted. These scenarios can address 
climate variability, basin conditions, projected demands, ecosystem needs, regulatory 
environments, operational goals, and existing infrastructure (Yates et al., 2005; Rajendran et 
al., 2020). 
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    In these equations, 𝑂௜,  𝑃௜,  𝑂ത,  𝑃ത, and 𝑛 represent observed data, predicted data, the mean of 
observed data, the mean of predicted data, and the number of data points, respectively (Nassery 
et al., 2021). 
    To link the MODFLOW model to WEAP, the MODFLOW model must first be prepared and 
calibrated externally. The connection between WEAP nodes and MODFLOW cells is 
established through a shapefile linking MODFLOW cells to basin areas, groundwater nodes, 
and demand sites supplied by wells. This shapefile provides a physical link between wells and 
the supplied demand sites (Hadded et al., 2013). 
 
Climate Change Simulation 
 
To simulate climate change, historical data from fifteen Global Climate Models (GCMs) based 
on the IPCC Sixth Assessment Report  (CMIP6) were downloaded and compared with 
observation data. In the initial step, climate variables (temperature and precipitation) were 
extracted for each of the six selected GCM models from the ESGF site for the historical period. 
These data were then compared with observational data, using R², RMSE, and NSE criteria for 
model selection (Equations 5, 6, and 7). 
    Following the comparison and selection of the optimal GCM, three SSPs scenarios: SSP1-
2.6, SSP2-4.5, and SSP5-8.5 were used to generate future temperature and precipitation data 
(2025-2060). Meteorological data from the Khorramabad synoptic station (chosen for its 
suitable time series) were used for climate change analysis. Finally, using the LARS-WG 
model, future climate variable projections were simulated.  
 
Downscaling 
 
In this study, the Long Ashton Research Station Weather Generator (LARS-WG) (Semenov & 
Barrow, 2002) was used to downscale the precipitation and temperature data produced by MRI-
ESM2 model. LARS-WG has demonstrated good performance in reproducing various climate 
statistics, including extreme weather events, under different climatic conditions (Semenov & 
Stratonovitch, 2010). LARS-WG uses a serial approach to determine wet and dry days 
throughout a calendar year (Semenov & Barrow, 2002). This model uses fitting of monthly 
semi-empirical distributions on the lengths of the wet and dry days and daily precipitation 
amounts to simulate daily precipitation. In the first stage, the minimum and maximum daily 
temperatures are conditioned on wet and dry days. Then semi-empirical distribution functions 
are fitted to the residual temperatures. The residual temperatures (𝑅) for each month and series 
are given by: 
𝑅𝑋௜ = ൫𝑋௜ − 𝑋ത௝൯ 𝑆𝐷௜⁄           (8) 
where 𝑋, 𝑋ത, SD and 𝑖 are the observed, mean, standard deviations of the temperature data, and 
the day respectively.  
    Minimum and maximum temperatures are generated using the normalization method 
(Racsko et al., 1991). In the first stage, temperatures are classified into two series of wet and 
dry days. The mean and standard deviation of each specific month are calculated for each series. 
The finite Fourier series of order 3 is fitted to the mean and standard deviation of each series. 
Then the observed residual series 𝑅𝑋௜ is constructed using Equation 1 (Richardson 1981). The 
time autocorrelation coefficient of wet and dry conditions is calculated using the corresponding 
residuals (Semenov & Stratonovitch, 2010). The Synthesized residuals are generated using the 
fit semiempirical function, time autocorrelation, and cross-correlation coefficients (Naderi & 
Raeisi, 2020). Daily data are calculated using Equation 8 with the mean and standard deviation 



 

 

of the synthesized residuals (Richardson, 1981; Semenov & Stratonovich, 2010, Naderi & 
Raeisi, 2020). 
    The observed daily precipitation, minimum and maximum temperature data (1971–2016 
period) at the Khorramabad synoptic station are input into the weather generator to develop the 
monthly statistical distribution functions. The LARS-WG is separately verified at each station 
using the 36-year generated daily precipitation, minimum and maximum temperature data. The 
monthly statistical distributions and monthly mean values of generated precipitation, minimum 
and maximum temperature are compared with observed ones using the Kolmogorov-Smirnov 
test and Student’s t test, respectively, at the significance level of 0.01 (Naderi & Raeisi, 2016, 
Semenov & Barrow, 2002). All tests are accepted in the Khorramabad synoptic stations at this 
significance level. 
    The WG uses a perturbation method to downscale GCM outputs for each station, in which 
precipitation data, minimum and maximum temperatures predicted for the future are calculated 
using a combination of observed distribution functions and parameters known as change factors 
(Semenov & Barrow, 2002). The change factors (CF) for precipitation depth, mean wet spell 
length, mean dry spell length, and mean standard deviation temperature for each calendar month 
(i) are calculated with the following equation (Semenov & Barrow, 2002; Roosmalen et al., 
2009): 
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in which 𝑋௜,௝ denotes the corresponding variable for calendar month 𝑖 and year 𝑗 for the future 
and base line periods of 𝑚 and 𝑛 years, respectively. 
    The change factor for minimum and maximum temperatures is the absolute difference 
between the monthly averages of the future and base periods. 
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    The change factors for each year are calculated using the method proposed by Iizumi et al 
(2012). In their study, 20-year time windows are chosen to calculate change factors, with each 
time window being shifted forward one year. Choosing a 20-year time window (long time) to 
calculate change factors may result in smooth trends, which are likely not to reflect precipitation 
trends at small scales (Iizumi et al., 2012). Furthermore, selection along the time window may 
exclude wet or dry periods of short duration, while they are very important in hydrogeological 
studies. Therefore, Naderi and Raisi (2016) used the 1-year forward shift method to calculate 
the change factors in a transient manner, in which future time windows were selected as 5-year 
periods. They showed that when the impact of climate change on water resources needs to be 
assessed, a 5-year time window is appropriate for studying climate change (Naderi & Saatsaz, 
2020). Therefore, in this study, we used a 5-year time window to calculate change factors for 
each year between 2025 and 2060. 
 
Discussion and Results 
 
Groundwater Flow Modeling 
 
To assess the impacts of climate change on groundwater resources in the central Khorramabad 
plain aquifer, the MODFLOW code within GMS software was utilized. Initially, a conceptual 
model of the central Khorramabad plain aquifer was spatially and temporally gridded. Spatially, 
a three-dimensional grid was created with 122 rows (x-dimension) and 114 columns (y-
dimension), with each cell measuring 150 × 150 meters. Temporally, the conceptual model was 
divided into 120 monthly time steps. Subsequently, the model was populated with data for three 
parameters: topography, bedrock, and initial hydraulic head. Additional parameters were 
applied to the conceptual model through appropriate packages. 



 

 

    The central Khorramabad plain aquifer model was calibrated under both steady-state and 
transient conditions. For the steady-state condition, October 2011 was selected as the reference 
month. For transient modeling, groundwater flow was simulated over a 120-month period (10 
years), from October 2010 to September 2020. After calibrating the model under steady-state 
conditions, it was then executed under transient conditions. In the transient state, all time-
dependent inputs, including water table levels, observation wells, recharge rates, extraction from 
operational wells, boundary water levels in the General Head Boundary (GHB) package, and river 
conductance over 120 months, were prepared and incorporated into the transient model. 
    Model calibration was performed both manually and automatically (PEST). In both methods, 
adjustments were made to hydraulic conductivity, specific yield (Fig. 2), and inflows and outflows. 
Calibration errors under steady-state and transient conditions are provided in Table 1. Following 
calibration, the model’s accuracy for predictive purposes was verified by validating it over a 36-
month period from October 2020 to September 2023. The results of the model validation confirm 
the accuracy of the developed central Khorramabad plain aquifer model (Table 1). 
 
Surface-Groundwater Simulation 
 
To conduct surface and groundwater simulations in the WEAP software environment, sources, 
demands, and other influencing factors were first assessed and then introduced into the model. 
Within the study area, water demands were categorized into domestic, agricultural, and 
industrial uses. Water supply sources included rivers and groundwater. After examining water 
demand centers and supply sources in the study area, the hydraulic relationships among them 
were established. 
 
Table 1. Model Performance Metrics Used in the Research for MODFLOW and WEAP-MODFLOW 
Models 

 
 

 
Figure 2. Final Values of Hydraulic Conductivity (HK) and Specific Yield (SY) 



 

 

    For rainfall-runoff simulation, the soil moisture method available in the WEAP model was 
employed, chosen based on available data for the basin under study. Once data were inputted 
for each component, the WEAP model was run, followed by calibration and validation. WEAP 
modeling was conducted on a monthly scale over a 13-year period, with 10 years (October 2010 
to September 2020) allocated for calibration and 3 years (October 2020 to September 2023) for 
validation. Calibration was performed using both manual and automatic (PEST) methods. 
    In the WEAP model, groundwater is represented as a reservoir, without incorporating 
detailed groundwater features such as water table levels in each part of the aquifer. Thus, WEAP 
alone cannot model aquifer details without integrating a groundwater model. One of WEAP’s 
advantages is its compatibility with the MODFLOW groundwater model. Linking these models 
allows for detailed aquifer modeling within WEAP’s surface water framework. The purpose of 
linking these models is to observe the effects of surface and groundwater allocations on their 
interactions. A Shapefile acts as the linkage between the two models. This Shapefile, created in 
GIS, overlays the groundwater model grid onto the study area and connects each defined layer 
in WEAP to the corresponding cell that represents that layer. The Shapefile defines cells for 
land use, wells, existing demand points, aquifer zones, river cells, and more. 
    Once WEAP and MODFLOW were linked, the combined model (Fig. 3) was calibrated for 
the study area. Calibration of the linked model is crucial for accurately simulating runoff, 
aquifer-river interactions, return flows, losses, and infiltration. To evaluate the calibration 
results and match them with observational data, the error coefficients NSE, RMSE, and R² were 
used (Table 1). 
 
Climate Change Simulation 
 
To simulate climate change, historical data for precipitation and temperature from fifteen 
GCMs (based on CMIP6) were downloaded from the ESGF website. These data, in NC file 
format, were subsequently extracted using GIS software. The monthly long-term averages of 
climate variables from the GCM models were then compared with observational data. 
Performance metrics, including NSE, RMSE, and R², were used for comparison (Table 2).  
    Based on this comparison, the MRI-ESM2 model was selected as the best-performing GCM. 
Given the large spatial scale of this model’s computational cells, downscaling was necessary 
for finer spatial detail. LARS-WG7 was used for downscaling and generating future climate 
data.  
 

 
Figur 3. WEAP-MODFLOW Linked Model 



 

 

    For LARS-WG calibration, 45 years of observational data from the Khorramabad synoptic 
station (1971-2016) served as the baseline period. The performance metrics from comparing 
simulated climate variables with observations demonstrated LARS-WG’s satisfactory accuracy 
in simulating climate variables (Table 2). Figure 4 illustrates the monthly averages of observed 
and simulated precipitation (Pr), minimum temperature (Tmin), and maximum temperature 
(Tmax) during the baseline period. 
    After validating LARS-WG’s efficacy, climate variables were projected for a 36-year period 
(2025-2060) under three SSPs scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5. Figure 5 shows 
the percentage changes in monthly average precipitation, minimum temperature, and maximum 
temperature in the future period compared to the baseline period. As illustrated, all three 
scenarios indicate decreased precipitation in autumn and in February and March, with increases 
in spring. 

 
Table 2. Model Performance Metrics for Climate Parameters 

 
 

 
Figur 4. Monthly Average Observed and Simulated Pr, Tmin, and Tmax, Observation data (O), 
Simulated data (S) 

 

 
Figur 5. Percentage Changes in Monthly Average Pr, Tmin, and Tmax in SSP scenarios Compared to 
the Baseline 
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    Overall, the average annual precipitation is projected to decrease under all scenarios in the 
future compared to the baseline (508.8 mm). Average annual precipitation for the future period 
was estimated at 466.2, 451.1, and 446.9 mm under SSP1-2.6, SSP2-4.5, and SSP5-8.5, 
respectively. The average minimum and maximum monthly and annual temperatures are also 
projected to rise under the three scenarios. Minimum temperature increases are projected to be 
1.9°C, 2°C, and 2.4°C, respectively. Likewise, maximum annual temperature increases are 
estimated at 1.8°C, 1.9°C, and 2.3°C, respectively, for the scenarios mentioned. According to 
the results, in general, the temperature is increasing and precipitation is decreasing in the studied 
area. These results are consistent with the results of other studies (Iranshahi et al., 2022; 
Moghaddam et al., 2023; Ashofteh et al., 2024). 
 
limitations, uncertainty and parameter sensitivity in climate projections 
 
GCM models are complex tools used to simulate and predict the state of the atmosphere and 
climate. Due to the complexities of the Earth system, these models have limitations such as: 
heavy and time-consuming computations, low spatial resolution, insufficient data for training, 
etc. Also, the use of GCM models is always accompanied by uncertainties. Although several 
factors cause uncertainty in predicting future climate parameters, the uncertainty of GCM 
models is known to be the main factor causing errors in meteorological forecasts (Hawkins & 
Sutton, 2009). Therefore, using a single GCM model usually does not provide a very good 
estimate of meteorological parameters. In such situations, it is necessary to reduce the 
uncertainty of these models by combining different GCM models (Gohari et al., 2013). There 
are two general methods for combining different GCM models. In the first method, the 
probability of prediction accuracy of each GCM model is considered to be the same (Tao & 
Zhang, 2010), but in the second method, GCM models are weighted based on their ability to 
predict meteorological parameters, which increases the accuracy of meteorological parameter 
estimates compared to the first method (Connolley and Bracegirdle 2007; Elmahdi et al., 2008). 
In this study, the MRI-ESM2 model outputs were used, considering that it showed the best 
performance compared to other GCM models based on NSE, RMSE, and R² criteria. This model 
showed the minimum error for all climate parameters in SSP1-2.6, SSP2-4.5, and SSP5-8.5 
scenarios. 
    In addition to the uncertainty that GCM models have in predicting meteorological 
parameters, another factor that reduces the usability of GCM models is the large-scale nature 
of GCM model output. In other words, GCM models predict meteorological data on a large-
scale grid at high altitudes in the atmosphere (IPCC 2007). The most common way to address 
this problem is to use downscaling methods. These methods convert the output of GCM models 
to a local scale using data from weather stations (Strauss et al., 2013). In this study, the LARS-
WG model was used for downscaling. 
    In general, it can be said that understanding the limitations, uncertainties, and sensitivity of 
parameters in GCM models leads to better predictions of climate change and its impacts on 
Earth. Sensitivity analysis is used to find sensitive parameters. In sensitivity analysis, small 
changes in input parameters (precipitation, temperature, solar radiation, greenhouse gases, etc.) 
have a significant impact on model outputs. In this study, precipitation was identified as the 
most sensitive input parameter. 
 
The Impact of Climate Change on Surface and Groundwater Resources 
 
Based on climate change simulations, alterations in surface runoff, groundwater level and 
aquifer storage under three SSPs scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) were evaluated. 
For this purpose, the results from each climate scenario were independently applied to the 



 

 

WEAP-MODFLOW model. The findings from the WEAP-MODFLOW model indicate that, 
due to increased temperatures, decreased precipitation, population growth, and consequently 
higher water demand across domestic, industrial, and agricultural sectors, both surface and 
groundwater resources will decline in all three climate scenarios in the future period (2025–
2060) compared to the baseline period (2011–2020). 
    Figure 6 illustrates the average annual flow rate of the river under scenarios SSP1-2.6, SSP2-
4.5, and SSP5-8.5. The results show that the river’s average annual flow rate will be 7.74, 5.73, 
and 4.75 cubic meters per second (m3/s) in scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5, 
respectively. This signifies a reduction of 1.89, 3.9, and 4.88 m3/s from the baseline period’s 
average (9.63 m3/s). The most significant changes in monthly average flow rate between the 
future and baseline periods, across all three climate scenarios, occur during the autumn season 
and the months of January and June. 
    In previous studies by Moghaddam et al. (2023) and Ashofteh et al. (2024) the runoff rate in 
the optimistic scenario shows a slight increase (0.02 cubic m3/s) compared to the base period. 
While in this study, in the optimistic scenario (SSP1-2.6), the runoff rate shows a decrease 
compared to the base period (1.89 m3/s). In the pessimistic scenario (SSP5-8.5), according to 
previous studies, the runoff rate decreases compared to the base period (4.88 m3/s) and its value 
in this study is almost equal to the other studies mentioned. 
    Examining the aquifer status of the central plain in Khorramabad under climate change 
effects indicates that groundwater levels will decrease under all three scenarios (SSP1-2.6, 
SSP2-4.5, and SSP5-8.5) compared to the baseline model period (Fig. 7). 
 

 
Figur 6. Average annual river flow in the future period in SSPs scenarios  

 

 
Figur 7. Average annual groundwater level and aquifer storage in SSP scenarios  
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    The average water level will decline by 13.65, 25.54, and 28.24 meters in scenarios SSP1-
2.6, SSP2-4.5, and SSP5-8.5, respectively, compared to the baseline average (1187 m). The 
most significant drop in groundwater levels is expected in September and October, largely due 
to increased water demand, especially for irrigating autumn wheat crops.  Although these results 
show a decrease in water table, similar to the studies of Moghaddam et al. (2023) and Ashofteh 
et al. (2024) they show a significant difference in the decrease in water table. In previous 
studies, the water table has decreased by an average of 5.4 meters in the optimistic scenario and 
7.6 meters in the pessimistic scenario. In this study, the water table has decreased by an average 
of 13.65 and 28.24 meters in the optimistic and pessimistic scenarios, respectively. 
    The annual average aquifer storage also declines across all climate scenarios (Fig. 7), with 
reductions of 82.88, 143.11, and 171.58 million cubic meters (mcm) in SSP1-2.6, SSP2-4.5, 
and SSP5-8.5, respectively, compared to the baseline storage average of 480 mcm. 

 
Optimal Water Resource Management in the Future Period under Climate Change 
 
Considering the significant impacts of climate change, rising temperatures, and declining 
rainfall on water resources in the Khorramabad basin, steps must be taken to ensure a long-term 
and sustainable drinking water supply for Khorramabad city. Currently, Khorramabad, the 
largest city and capital of Lorestan Province, relies on groundwater sources (springs and wells) 
for its drinking water supply, which is not a reliable or sustainable solution and could be 
impacted by short-term droughts. Sustainable water production could involve advanced 
treatment systems, renewable water resources, and dam construction. To secure water for both 
domestic and industrial uses, the construction of the Makhmalkouh Dam has been prioritized, 
with an annual supply goal of 55 mcm for urban drinking water and five million cubic meters 
for industrial use. 
    This section assesses the impact of the absence and presence of the Makhmalkouh Dam on 
groundwater resources and the capacity to meet drinking and industrial water needs under 
emission scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5. 
 
Absence of the Makhmalkouh Dam 
 
In the baseline period, Khorramabad’s drinking and industrial water demands were fully met. 
However, under climate change, drinking and industrial water supplies will face challenges in 
scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5. Figures 8 and 9 show unmet water demand for 
various scenarios. 
    In the drinking water sector, scenario SSP1-2.6 meets demand from 2025 to 2033, but an 
average of 15.75 million cubic meters remains unmet annually from 2034 to 2060. In scenarios 
SSP2-4.5 and SSP5-8.5, drinking water demand is not fully met throughout the future period 
(2025–2060), with unmet demand averaging 37.7 and 47.65 mcm annually, respectively. 
According to the results, most unmet demand occurs during warmer months due to increased 
seasonal demand, with average monthly fluctuations of unmet demand reaching 0.74, 2.29, and 
2.79 mcm in scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. 
    In the industrial sector, in the SSP1-2.6 scenario, the required water is fully met. In scenarios 
SSP2-4.5 and SSP5-8.5, industrial water demand is not fully met throughout the future period 
(2040–2060) and (2035-2060), with unmet demand averaging 1.67 and 2.43 mcm annually, 
respectively. 
    The effects of climate change on groundwater resources without the Makhmalkouh Dam 
were analyzed in the previous section on the impact of climate change on surface and 
groundwater resources. 



 

 

 
Figur 8. Unmet drinking water demand in SSP scenarios 

 

 
Figur 9. Unmet industrial water demand in SSP scenarios  

 
Construction of the Makhmalkouh Dam 
 
The findings indicate that the construction of the Makhmalkouh Dam in the coming period, 
under the SSPs scenarios 1-2.6, 2-4.5, and 5-8.5, would substantially meet water demands for 
both drinking and industrial purposes. According to Figure 10, the drinking water demand under 
the SSP1-2.6 scenario is fully met from 2025 to 2050. However, between 2051 and 2060, there 
is an average annual unmet demand of approximately 2.77 mcm. In the SSP2-4.5 and SSP5-8.5 
scenarios, drinking water demand is fully met from 2025 to 2039, while the average annual 
unmet drinking water demand from 2040 to 2060 is 7.16 and 12.3 mcm, respectively. In the 
industrial sector, water demands are fully met in all three scenarios (SSP1-2.6, SSP2-4.5, and 
SSP5-8.5). Since both drinking and industrial water needs are nearly fully met under SSP1-2.6, 
the average monthly fluctuation in unmet demand is zero. In the SSP2-4.5 and SSP5-8.5 
scenarios, the average monthly fluctuation in unmet demand is 0.6 and 0.92 mcm, respectively. 
    After the construction of the Makhmalkouh Dam, Khorramabad’s drinking and industrial 
water supply will come from both groundwater and the dam. The combined use of groundwater 
and dam water for meeting water demands reduces pressure on the groundwater source. 
According to the results, the average groundwater level declines by 11.32, 21.9, and 25.1 meters 
below the baseline average level in the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, 
respectively. Moreover, the average annual groundwater level rises by 2.32, 3.64, and 3.61 
meters, respectively, in the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, compared to the 
scenario where the dam is not built (Fig. 11).  

0

10

20

30

40

50

60

70

80

20
25

20
27

20
29

20
31

20
33

20
35

20
37

20
39

20
41

20
43

20
45

20
47

20
49

20
51

20
53

20
55

20
57

20
59

U
nm

et
 D

em
an

d 
(m

cm
)

Time (year)

ssp1.2.6 ssp2.4.5 ssp5.8.5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

U
nm

et
 D

em
an

d 
(m

cm
)

Time (year)

ssp1.2.6 ssp2.4.5 ssp5.8.5



 

 

 
Figure 10. Unmet Drinking water demand in SSP scenarios  

 

 
Figure 11. Annual average groundwater level and aquifer storage in SSP scenarios 

 
    According to Figure 11, the average annual aquifer storage volume decreases by 55.67, 
90.84, and 123.53 mcm, respectively, compared to the baseline period. However, compared to 
the scenario without the dam, the annual average aquifer storage volume increases by 27.2, 
52.27, and 48.05 mcm in the three scenarios. 
 
Conclusion 
 
In general, the results suggest that future climate change will significantly impact the surface 
and groundwater resources of the Khorramabad River basin. Climate variable projections under 
SSP1-2.6, SSP2-4.5, and SSP5-8.5 indicate reduced precipitation and increased minimum and 
maximum temperatures over the next 36 years compared to the baseline period. Based on the 
projected percentage changes in climate variables for the coming period relative to the baseline, 
a decrease in autumn and winter precipitation and an increase in spring precipitation are 
anticipated. The percentage changes in minimum and maximum temperatures indicate a rise 
across all seasons. 
    The results of integrating emission scenarios with the WEAP-MODFLOW model reveal a 
decrease in the average annual flow rate in the future relative to the reference scenario. The 
average river flow rate is projected to decline by 1.89, 3.9, and 4.88 m3/s under the SSP1-2.6, 
SSP2-4.5, and SSP5-8.5 scenarios, respectively, compared to the reference scenario. Reduced 
surface water availability and increased water demand in various sectors in the future period 
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will likely lead to increased groundwater withdrawals. Therefore, according to the results of 
this study, groundwater level and aquifer storage will decline in the future under SSP1-2.6, 
SSP2-4.5, and SSP5-8.5 scenarios. In the entire future period, the average groundwater level in 
SSP1-2.6, SSP2-4.5, and SSP5-8.5 decreases by 13.65, 25.54, and 28.24 meters, respectively, 
while the average aquifer storage in the three scenarios declines by 82.88, 143.11, and 171.58 
mcm, respectively. 
    Given the results, under climate change conditions in the SSP1-2.6, SSP2-4.5, and SSP5-8.5 
scenarios, drinking and industrial water supplies will face challenges, with average annual 
unmet demand of 15.57, 37.7, and 47.65 mcm, respectively, in the SSP1-2.6 (2034-2060), 
SSP2-4.5, and SSP5-8.5 scenarios. 
    The construction of the Makhmalkouh Dam would nearly meet all water demands for 
drinking and industry in SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. Additionally, building 
this dam is expected to reduce the decline in groundwater level and increase aquifer storage 
compared to a scenario without the dam. Although the dam would fully meet drinking and 
industrial water demands under different scenarios, groundwater level and aquifer storage in 
SSP1-2.6, SSP2-4.5, and SSP5-8.5 still show significant decreases relative to the baseline 
period. This is due to the extensive groundwater use in agriculture. Therefore, it is 
recommended to adopt multiple and appropriate management approaches and strategies to 
optimize water resource management and reduce the pressure on surface and groundwater 
resources in this basin. Recommended water resource management strategies include 
monitoring permitted wells, preventing unauthorized well drilling, selecting appropriate crop 
patterns, using modern irrigation methods, and prioritizing water allocation to different sectors 
in the study area. 
    Climate change is causing changes in precipitation patterns, especially in arid and semi-arid 
regions, which is leading to water scarcity in many parts of the world. In arid and semi-arid 
regions, in addition to changes in precipitation patterns, socio-economic factors, including 
urbanization and population growth, are putting pressure on water resources, resulting in 
increased demand for water. The simultaneous operation of these factors will have a significant 
impact on the future availability of water resources in the Khorramabad watershed.  The results 
of this study clearly demonstrate how socio-economic variables and climate change affect water 
resources in the Khorramabad catchment and provide guidance for regional resource planning 
and management. This study highlights the critical role of integrated modeling in developing 
and implementing effective IWRM plans, contributing to sustainable water resources 
management in the Khorramabad catchment and other similar areas. 
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